精英家教网 > 高中数学 > 题目详情
6.计算
(1)$\root{3}{(-8)^{3}}$+$\sqrt{(-10)^{2}}$+($\frac{1}{2}$)-3
(2)lg5•(lg8+lg1000)+(lg2${\;}^{\sqrt{3}}$)2+lg$\frac{1}{6}$+lg0.006.

分析 (1)利用指数的运算法则即可得出.
(2)利用对数的运算法则即可得出.

解答 解:(1)原式=-8+10+8=10.
(2)原式=lg5•(3lg2+3)+3lg22-lg6+lg6-3
=3lg2(lg5+lg2)+3lg5-3
=3(lg2+lg5)-3=0.

点评 本题考查了指数与对数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列说法错误的是(  )
A.已知两个平面α,β,若两条异面直线m,n满足m?α,n?β且m∥β,n∥α,则α∥β
B.已知a∈R,则“a<1”是“|x-2|+|x|>a”恒成立的必要不充分条件
C.设p,q是两个命题,若¬(p∧q)是假命题,则p,q均为真命题
D.命题p:“?x∈R,使得x2+x+1<0”,则¬p:“?x∈R,均有x2+x+1≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=log2(2x+1)-$\frac{x}{2}$.
(1)证明:对任意的b∈R,函数f(x)=log2(2x+1)-$\frac{x}{2}$的图象与直线y=$\frac{x}{2}$+b最多有一个交点;
(2)设函数g(x)=log4(a-2x),若函数y=f(x)与函数y=g(x)的图象至少有一个交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过抛物线y2=8x焦点F作直线l交抛物线于A、B两点,若线段AB中点M的横坐标为4,则|AB|=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=ax在区间[0,1]上的最大值是最小值的2倍,则a的值为(  )
A.2B.$\frac{\sqrt{2}}{2}$C.2或$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$或$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\sqrt{{x}^{2}-5x-6}$的定义域为(-∞,-1]∪[6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a>0,b>0,a+b=2,则下列不等式不恒成立的是(  )
A.ab≤1B.a2+b2≥2C.$\sqrt{a}$+$\sqrt{b}$≤$\sqrt{2}$D.$\frac{1}{a}$+$\frac{1}{b}$≥2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若定义在R上的偶函数f(x)满足f(x-1)=f(x+1).且当x∈[-1,0]时,f(x)=-x2+1,如果函数g(x)=f(x)-a|x|恰有8个零点,则实数a的值为8-2$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn(n∈N*),且满足an+2Sn=2n+2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:$\frac{1}{{3({a_1}-2)({a_2}-2)}}+\frac{1}{{{3^2}({a_2}-2)({a_3}-2)}}+…+\frac{1}{{{3^n}({a_n}-2)({a_{n+1}}-2)}}<\frac{3}{4}$.

查看答案和解析>>

同步练习册答案