精英家教网 > 高中数学 > 题目详情
16.已知数列{an}的前n项和为Sn(n∈N*),且满足an+2Sn=2n+2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:$\frac{1}{{3({a_1}-2)({a_2}-2)}}+\frac{1}{{{3^2}({a_2}-2)({a_3}-2)}}+…+\frac{1}{{{3^n}({a_n}-2)({a_{n+1}}-2)}}<\frac{3}{4}$.

分析 (Ⅰ)由an+2Sn=2n+2,利用递推关系可得:3an=an-1+2,变形为${a_n}-1=\frac{1}{3}({a_{n-1}}-1)(n≥2)$,再利用等比数列的通项公式即可得出.
(II)利用“裂项求和”方法与数列的单调性即可得出.

解答 (Ⅰ)解:∵an+2Sn=2n+2,令n=1,得$3{a_1}=4,{a_1}=\frac{4}{3}$.
由an+2Sn=2n+2得  n≥2时,an-1+2Sn-1=2(n-1)+2,
两式相减得;3an=an-1+2,
∴${a_n}-1=\frac{1}{3}({a_{n-1}}-1)(n≥2)$,
∴数列{an-1}是以首项为${a_n}-1=\frac{1}{3}$,公比为$\frac{1}{3}$的等比数列,
∴${a_n}-1=\frac{1}{3}•{(\frac{1}{3})^{n-1}}={(\frac{1}{3})^n}$,∴${a_n}={(\frac{1}{3})^n}+1$.
(Ⅱ)证明:
∵$\frac{1}{{{3^n}({a_n}-2)({a_{n+1}}-2)}}=\frac{1}{{{3^n}•\frac{{{3^n}-1}}{3^n}•\frac{{{3^{n+1}}-1}}{{{3^{n+1}}}}}}$=$\frac{{{3^{n+1}}}}{{({3^n}-1)•({3^{n+1}}-1)}}=\frac{3}{2}(\frac{1}{{{3^n}-1}}-\frac{1}{{{3^{n+1}}-1}})$,
∴$\frac{1}{{3({a_1}-2)({a_2}-2)}}+\frac{1}{{{3^2}({a_2}-2)({a_3}-2)}}+…+\frac{1}{{{3^n}({a_n}-2)({a_{n+1}}-2)}}$
=$\frac{3}{2}(\frac{1}{2}-\frac{1}{8}+\frac{1}{8}-\frac{1}{26}+…+\frac{1}{{{3^n}-1}}-\frac{1}{{{3^{n+1}}-1}})$=$\frac{3}{2}(\frac{1}{2}-\frac{1}{{{3^{n+1}}-1}})$=$\frac{3}{4}-\frac{1}{{2({3^{n+1}}-1)}}<\frac{3}{4}$.

点评 本题考查了数列递推关系、等比数列的通项公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.计算
(1)$\root{3}{(-8)^{3}}$+$\sqrt{(-10)^{2}}$+($\frac{1}{2}$)-3
(2)lg5•(lg8+lg1000)+(lg2${\;}^{\sqrt{3}}$)2+lg$\frac{1}{6}$+lg0.006.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3+bx2+cx在x=1处的切线方程为12x+y-1=0.
(1)求b,c的值;
(2)若方程f(x)-m=0有三个解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a,b为正实数,直线y=x-a与曲线y=ln(x+b)相切,则$\frac{{a}^{2}}{2+b}$的取值范围$(0,\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对于函数f(x)与g(x)和区间D,如果存在x0∈D,使|f(x0)-g(x0)|≤1,则称x0是函数f(x)与g(x)在区间D上的“友好点”.现给出两个函数:
①f(x)=x2,g(x)=2x-2;②$f(x)=\sqrt{x}$,g(x)=x+2;
③f(x)=e-x,$g(x)=-\frac{1}{x}$;④f(x)=lnx,g(x)=x.
则在区间(0,+∞)上存在唯一“友好点”的是①④.(填上所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=x2+ax+b,a,b∈R,若f(x)>0的解集为{x|x<0或x>2}.
(Ⅰ)求a,b的值;
(Ⅱ)解不等式f(x)<m2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在(1+x+x2)(1-x)6的展开式中,x6的系数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某小学对五年级的学生进行体质测试,已测得五年级一班30名学生的跳远成绩(单位:cm),用茎叶图统计如图,男生成绩在175cm以上(包括175cm)定义为合格,成绩在175cm以下(不含175cm)定义为“不合格”;女生成绩在165以上(包括165cm)定义为“合格”,成绩在165cm以下(不含165cm)定义为“不合格”.
(1)求男生跳远成绩的中位数.
(2)根据男女生的不同,用分层抽样的方法从该班学生中抽取1个容量为5的样本,求抽取的5人中女生的人数.
(3)以此作为样本,估计该校五年级学生体质的合格率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,BC=2,AC=$\sqrt{2}$,AB=$\sqrt{3}$+1.设△ABC的外心为O,若$\overrightarrow{AC}$=m$\overrightarrow{AO}$+n$\overrightarrow{AB}$,则m+n=-1.

查看答案和解析>>

同步练习册答案