分析 设AB,AC中点分别为M,N,利用向量的三角形法则和三角形的外心的性质即可得出答案.
解答 解:设AB,AC中点分别为M,N,![]()
则$\overrightarrow{OM}$=$\overrightarrow{AM}$-$\overrightarrow{AO}$=$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{m}$($\overrightarrow{AC}$-n$\overrightarrow{AB}$)=($\frac{1}{2}+\frac{n}{m}$)$\overrightarrow{AB}$-$\frac{1}{m}$$\overrightarrow{AC}$,
$\overrightarrow{ON}$=$\overrightarrow{AN}$-$\overrightarrow{AO}$=$\frac{1}{2}$$\overrightarrow{AC}$-$\frac{1}{m}$($\overrightarrow{AC}$-n$\overrightarrow{AB}$)=$\frac{n}{m}$$\overrightarrow{AB}$+($\frac{1}{2}-$$\frac{1}{m}$)$\overrightarrow{AC}$,
由外心O的定义知,$\overrightarrow{OM}$⊥$\overrightarrow{AB}$,$\overrightarrow{ON}$⊥$\overrightarrow{AC}$,
因此,$\overrightarrow{OM}$•$\overrightarrow{AB}$=0,$\overrightarrow{ON}$•$\overrightarrow{AC}$=0,
∴[($\frac{1}{2}+\frac{n}{m}$)$\overrightarrow{AB}$-$\frac{1}{m}$$\overrightarrow{AC}$]•$\overrightarrow{AB}$=0,[$\frac{n}{m}$$\overrightarrow{AB}$+($\frac{1}{2}-$$\frac{1}{m}$)$\overrightarrow{AC}$]•$\overrightarrow{AC}$=0,
即($\frac{1}{2}+\frac{n}{m}$)$\overrightarrow{AB}$2-$\frac{1}{m}$$\overrightarrow{AC}$•$\overrightarrow{AB}$=0…①,$\frac{n}{m}$$\overrightarrow{AB}$•$\overrightarrow{AC}$+($\frac{1}{2}-$$\frac{1}{m}$)$\overrightarrow{AC}$2=0…②,
∵$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$,
∴$\overrightarrow{BC}$2=$\overrightarrow{AC}$2-2$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{AB}$2,
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\frac{1}{2}$($\overrightarrow{AC}$2+$\overrightarrow{AB}$2-$\overrightarrow{BC}$2)=1+$\sqrt{3}$…③,
将③代入①②得:$\left\{\begin{array}{l}(\frac{1}{2}+\frac{n}{m})(4+2\sqrt{3})-\frac{1}{m}(1+\sqrt{3})=0\\ \frac{n}{m}(1+\sqrt{3})+2(\frac{1}{2}-\frac{1}{m})=0\end{array}\right.$,
解得:$\left\{\begin{array}{l}m=-1-\sqrt{3}\\ n=\sqrt{3}\end{array}\right.$
∴m+n=-1,
故答案为:-1
点评 本题以向量在平面几何中的应用为载体,考查了向量的三角形法则和三角形的外心的性质,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3:2 | B. | 2:3 | C. | 1:3 | D. | 3:1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 垂心,外心,内心 | B. | 外心,内心,垂心 | C. | 内心,外心,垂心 | D. | 内心,垂心,外心 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com