精英家教网 > 高中数学 > 题目详情
14.如图,三棱锥O-ABC中,平面OAC⊥平面OAB,OC⊥OA,且OA=OB=OC=2,M为△ABC内部一点,点P在OM的延长线上,且OM=$\frac{1}{3}$MP,PA=PB.
(Ⅰ)证明:AB⊥平面POC
(Ⅱ)已知∠AOB=45°,求三棱锥A-PBC的体积.

分析 (I)设AB的中点为H,连接OH,HP.利用等腰石家庄的性质可得AB⊥OH,AB⊥HP.于是AB⊥平面OHP,AB⊥OP.利用面面垂直的性质定理可得OC⊥平面OAB,于是AB⊥OC.可得AB⊥平面POC.
(II)由OM=$\frac{1}{3}$MP,可得VA-PBC=VP-ABC=3VO-ABC.求出VO-ABC=VC-OAB=$\frac{1}{3}{S}_{△OAB}•OC$,即可得出.

解答 (I)证明:设AB的中点为H,连接OH,HP.
∵OA=OB,PA=PB,∴AB⊥OH,AB⊥HP.
又OH∩HP=H,AB⊥平面OHP,∴AB⊥OP.
∵平面OAC⊥平面OAB,且OC⊥OA,
∵OC⊥平面OAB,∴AB⊥OC.
又∵OP∩OB=O,∴AB⊥平面POC.
(II)解:∵OM=$\frac{1}{3}$MP,∴VA-PBC=VP-ABC=3VO-ABC
又OA=OB=OC=2,∠AOB=45°.
∴VO-ABC=VC-OAB=$\frac{1}{3}{S}_{△OAB}•OC$=$\frac{1}{3}×\frac{1}{2}×{2}^{2}×2×\frac{\sqrt{2}}{2}$=$\frac{2\sqrt{2}}{3}$.
∴VA-PBC=$2\sqrt{2}$.

点评 本题考查了线面面面垂直的判定与性质定理、等腰三角形的性质、三棱锥的体积计算公式,考查了空间想象能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知a,b为正实数,直线y=x-a与曲线y=ln(x+b)相切,则$\frac{{a}^{2}}{2+b}$的取值范围$(0,\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某小学对五年级的学生进行体质测试,已测得五年级一班30名学生的跳远成绩(单位:cm),用茎叶图统计如图,男生成绩在175cm以上(包括175cm)定义为合格,成绩在175cm以下(不含175cm)定义为“不合格”;女生成绩在165以上(包括165cm)定义为“合格”,成绩在165cm以下(不含165cm)定义为“不合格”.
(1)求男生跳远成绩的中位数.
(2)根据男女生的不同,用分层抽样的方法从该班学生中抽取1个容量为5的样本,求抽取的5人中女生的人数.
(3)以此作为样本,估计该校五年级学生体质的合格率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.为了得到函数y=$\sqrt{3}$sin$\frac{x}{3}$-cos$\frac{x}{3}$的图象,只需把函数y=2sin$\frac{x}{3}$的图象上所有的点(  )
A.向左平移$\frac{π}{2}$个单位B.向左平移$\frac{π}{6}$个单位
C.向右平移$\frac{π}{2}$个单位D.向右平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)是周期为2的奇函数,当-1≤x≤0时,f(x)=x2+x,则$f(\frac{2017}{2})$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=2x-1+x-1的零点为x0,则x0∈(  )
A.(-1,0)B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,BC=2,AC=$\sqrt{2}$,AB=$\sqrt{3}$+1.设△ABC的外心为O,若$\overrightarrow{AC}$=m$\overrightarrow{AO}$+n$\overrightarrow{AB}$,则m+n=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0.b>0)和圆O:x2+y2=b2,过双曲线C上一点P引圆O的两条切线,切点分别为A,B,若△PAB可为正三角形,则双曲线C的离心率e的取值范围是(  )
A.(1,$\sqrt{2}$]B.(1,$\sqrt{3}$]C.[$\frac{\sqrt{5}}{2}$,+∞)D.[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的值域
(1)y=-$\frac{4}{x}$,x∈[-3,0)∪(0,1];             
(2)y=x2+4x+1,x∈[-3,0].

查看答案和解析>>

同步练习册答案