分析 求函数的导数,利用导数构造函数,判断函数的单调性即可.
解答 解:函数的导数为y′=$\frac{1}{x+b}$=1,x=1-b,切点为(1-b,0),代入y=x-a,得a+b=1,
∵a、b为正实数,∴a∈(0,1),
则$\frac{{a}^{2}}{2+b}$=$\frac{{a}^{2}}{3-a}$,
令g(a)=$\frac{{a}^{2}}{3-a}$,则g′(a)=$\frac{a(6-a)}{(3-a)^{2}}$>0,
则函数g(a)为增函数,
∴$\frac{{a}^{2}}{2+b}$∈$(0,\frac{1}{2})$.
故答案为$(0,\frac{1}{2})$.
点评 本题主要考查导数的应用,利用导数的几何意义以及函数单调性和导数之间的关系是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,3) | B. | (1,4) | C. | (2,3) | D. | (2,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组 | 频数 | 频率 |
| [85,95) | ① | 0.025 |
| [95,105) | 0.050 | |
| [105,115) | 0.200 | |
| [115,125) | 12 | 0.300 |
| [125,135) | 0.275 | |
| [135,145) | 4 | ② |
| [145,155] | 0.050 | |
| 合计 | ③ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com