精英家教网 > 高中数学 > 题目详情
16.下列说法错误的是(  )
A.已知两个平面α,β,若两条异面直线m,n满足m?α,n?β且m∥β,n∥α,则α∥β
B.已知a∈R,则“a<1”是“|x-2|+|x|>a”恒成立的必要不充分条件
C.设p,q是两个命题,若¬(p∧q)是假命题,则p,q均为真命题
D.命题p:“?x∈R,使得x2+x+1<0”,则¬p:“?x∈R,均有x2+x+1≥0”

分析 判断两个平面的位置关系,可判断A;根据充要条件的定义,可判断B;根据复合命题真假判断的真值表,可判断C;写出原命题的否定,可判断D.

解答 解:已知两个平面α,β,若两条异面直线m,n满足m?α,n?β且m∥β,n∥α,则α∥β,故A正确;
“|x-2|+|x|>a”?“a<2”,故“a<1”是“|x-2|+|x|>a”恒成立的充分不必要条件,故B错误;
设p,q是两个命题,若¬(p∧q)是假命题,则p∧q为真命题,则p,q均为真命题,故C正确;
命题p:“?x∈R,使得x2+x+1<0”,则¬p:“?x∈R,均有x2+x+1≥0”,故D正确;
故选:B.

点评 本题以命题的真假判断与应用为载体,考查了复合命题,空间线面关系,充要条件,特称命题的否定等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知椭圆:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,直线l:y=x+5$\sqrt{7}$,椭圆上任意点P,则点P到直线l的距离的最大值(  )
A.3$\sqrt{14}$B.2$\sqrt{7}$C.3$\sqrt{7}$D.2$\sqrt{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=x3+ax2-9x+3(a<0),且曲线y=f(x)斜率最小的切线与直线12x+y=6平行.试求:
(1)a的值;
(2)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化简或求值
(1)(2a${\;}^{\frac{1}{2}}}$b${\;}^{\frac{1}{3}}}$)(a${\;}^{\frac{2}{3}}}$b${\;}^{\frac{1}{2}}}$)÷($\frac{1}{3}$a${\;}^{\frac{1}{6}}}$b${\;}^{\frac{5}{6}}}$);
(2)($\frac{9}{16}$)${\;}^{\frac{1}{2}}}$+10lg9-2lg2+ln$\root{4}{e^3}$-log98•log4$\root{3}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=(m2-m-1)x3为幂函数,则m的值为(  )
A.1B.-1C.-1或2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对于函数f(x),若存在常数s,t,使得取定义域内的每一个x的值,都有f(x)=-f(2s-x)+t,则称f(x)为“和谐函数”,给出下列函数 ①f(x)=$\frac{x}{x+1}$ ②f(x)=(x-1)2 ③f(x)=x3+x2+1 ④f(x)=ln($\sqrt{1+9{x}^{2}}$-3x)•cosx,其中所有“和谐函数”的序号是(  )
A.①③B.②③C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法错误的是(  )
A.“m=-2”是“直线mx+(m-1)y-1=0与直线3x+my+2=0垂直”的充分不必要条件
B.已知a∈R,则“a<1”是“|x-2|+|x|>a”恒成立的必要不充分条件
C.设p,q是两个命题,若¬(p∧q)是假命题,则p,q均为真命题
D.命题p:“?x∈R,使得x2+x+1<0”,则¬p:“?x∈R,均有x2+x+1≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,f(-1),f(π),f(-2)的大小关系是(  )
A.f(π)>f(-2)>f(-1)B.f(π)>f(-1)>f(-2)C.f(π)<f(-2)<f(-1)D.f(π)<f(-1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算
(1)$\root{3}{(-8)^{3}}$+$\sqrt{(-10)^{2}}$+($\frac{1}{2}$)-3
(2)lg5•(lg8+lg1000)+(lg2${\;}^{\sqrt{3}}$)2+lg$\frac{1}{6}$+lg0.006.

查看答案和解析>>

同步练习册答案