精英家教网 > 高中数学 > 题目详情
5.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,f(-1),f(π),f(-2)的大小关系是(  )
A.f(π)>f(-2)>f(-1)B.f(π)>f(-1)>f(-2)C.f(π)<f(-2)<f(-1)D.f(π)<f(-1)<f(-2)

分析 根据偶函数的性质可得f(-2)=f(2)、f(-1)=f(1),由函数的单调性判断出函数值的大小关系.

解答 解:∵f(x)是定义域为R的偶函数,
∴f(-1)=f(1),f(-2)=f(2),
∵当x∈[0,+∞)时,f(x)是增函数,
∴f(π)>f(2)>f(1),
即f(π)>f(-2)>f(-1),
故选:A.

点评 本题考查函数的奇偶性、单调性的综合应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知直线l1:3x+4y-3=0,l2:6x+8y+n=0,则“n=14 是“l1,l2之间距离为2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法错误的是(  )
A.已知两个平面α,β,若两条异面直线m,n满足m?α,n?β且m∥β,n∥α,则α∥β
B.已知a∈R,则“a<1”是“|x-2|+|x|>a”恒成立的必要不充分条件
C.设p,q是两个命题,若¬(p∧q)是假命题,则p,q均为真命题
D.命题p:“?x∈R,使得x2+x+1<0”,则¬p:“?x∈R,均有x2+x+1≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的函数f(x)为偶函数,且满足f(x)=f(x+2),f(-1)=1,若数列{an}的前n项和Sn满足2Sn=an+1,a1=$\frac{1}{2}$,则f(a5)+f(a6)=(  )
A.4B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.定义在实数集上的函数f(x)=x2+ax(a为常数),g(x)=$\frac{1}{3}$x3-bx+m(b为常数),若函数f(x)在x=1处的切线斜率为3,x=$\sqrt{2}$是g(x)的一个极值点
(1)求a,b的值;
(2)若存在x∈[-4,4]使得f(x)≥g(x)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若关于x的方程a2-2a=|ax-1|(a>0且a≠1)有两个不等实根,则实数a的取值范围是(  )
A.(2,$\sqrt{2}$+1)B.($\sqrt{2}$,$\sqrt{2}$+1)C.($\sqrt{2}$,2)D.($\sqrt{2}$,2)∪(2,$\sqrt{2}$+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=log2(2x+1)-$\frac{x}{2}$.
(1)证明:对任意的b∈R,函数f(x)=log2(2x+1)-$\frac{x}{2}$的图象与直线y=$\frac{x}{2}$+b最多有一个交点;
(2)设函数g(x)=log4(a-2x),若函数y=f(x)与函数y=g(x)的图象至少有一个交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过抛物线y2=8x焦点F作直线l交抛物线于A、B两点,若线段AB中点M的横坐标为4,则|AB|=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若定义在R上的偶函数f(x)满足f(x-1)=f(x+1).且当x∈[-1,0]时,f(x)=-x2+1,如果函数g(x)=f(x)-a|x|恰有8个零点,则实数a的值为8-2$\sqrt{15}$.

查看答案和解析>>

同步练习册答案