精英家教网 > 高中数学 > 题目详情
13.已知定义在R上的函数f(x)为偶函数,且满足f(x)=f(x+2),f(-1)=1,若数列{an}的前n项和Sn满足2Sn=an+1,a1=$\frac{1}{2}$,则f(a5)+f(a6)=(  )
A.4B.2C.1D.0

分析 由已知数列递推式求得a5、a6的值,再结合偶函数f(x)满足f(x)=f(x+2),f(-1)=1求得f(a5)+f(a6).

解答 解:由2Sn=an+1,得2Sn-1=an(n≥2),
∴2an=an+1-an,得an+1=3an(n≥2),
又由2Sn=an+1,a1=$\frac{1}{2}$,得a2=1.
∴${a}_{5}=1×{3}^{3}=27$,${a}_{6}=1×{3}^{4}=81$.
由偶函数f(x)满足f(x)=f(x+2),可得函数f(x)的周期为2,
∴f(a5)=f(27)=f(-1)=1;
f(a6)=f(81)=f(1)=f(-1)=1,
∴f(a5)+f(a6)=1+1=2.
故选:B.

点评 本题考查数列递推式,考查了数列的函数特性,训练了函数周期性与奇偶性的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.不等式$\frac{x-2}{x+3}$≥0的解集为(-∞,-3)∪[2,+∞)(用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化简或求值
(1)(2a${\;}^{\frac{1}{2}}}$b${\;}^{\frac{1}{3}}}$)(a${\;}^{\frac{2}{3}}}$b${\;}^{\frac{1}{2}}}$)÷($\frac{1}{3}$a${\;}^{\frac{1}{6}}}$b${\;}^{\frac{5}{6}}}$);
(2)($\frac{9}{16}$)${\;}^{\frac{1}{2}}}$+10lg9-2lg2+ln$\root{4}{e^3}$-log98•log4$\root{3}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对于函数f(x),若存在常数s,t,使得取定义域内的每一个x的值,都有f(x)=-f(2s-x)+t,则称f(x)为“和谐函数”,给出下列函数 ①f(x)=$\frac{x}{x+1}$ ②f(x)=(x-1)2 ③f(x)=x3+x2+1 ④f(x)=ln($\sqrt{1+9{x}^{2}}$-3x)•cosx,其中所有“和谐函数”的序号是(  )
A.①③B.②③C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列说法错误的是(  )
A.“m=-2”是“直线mx+(m-1)y-1=0与直线3x+my+2=0垂直”的充分不必要条件
B.已知a∈R,则“a<1”是“|x-2|+|x|>a”恒成立的必要不充分条件
C.设p,q是两个命题,若¬(p∧q)是假命题,则p,q均为真命题
D.命题p:“?x∈R,使得x2+x+1<0”,则¬p:“?x∈R,均有x2+x+1≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知四边形ABCD和BCEG均为直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCEG,BC=CD=CE=2,AD=BG=1.
(1)证明:AG∥平面BDE;
(2)求AB与平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,f(-1),f(π),f(-2)的大小关系是(  )
A.f(π)>f(-2)>f(-1)B.f(π)>f(-1)>f(-2)C.f(π)<f(-2)<f(-1)D.f(π)<f(-1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{5^x},x≤0\end{array}$,则$f(f(\frac{1}{8}))$=$\frac{1}{125}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρcosθ-ρsinθ=1上的点与曲线M:$\left\{\begin{array}{l}{x=-2+cosφ}\\{y=1+sinφ}\end{array}\right.$(φ为参数)上的点的最短距离为(  )
A.2$\sqrt{2}$B.2$\sqrt{2}$-1C.$\sqrt{2}$-1D.1

查看答案和解析>>

同步练习册答案