| A. | “m=-2”是“直线mx+(m-1)y-1=0与直线3x+my+2=0垂直”的充分不必要条件 | |
| B. | 已知a∈R,则“a<1”是“|x-2|+|x|>a”恒成立的必要不充分条件 | |
| C. | 设p,q是两个命题,若¬(p∧q)是假命题,则p,q均为真命题 | |
| D. | 命题p:“?x∈R,使得x2+x+1<0”,则¬p:“?x∈R,均有x2+x+1≥0” |
分析 根据充要条件的定义,可判断A,B;根据复合命题真假判断的真值表,可判断C;写出原命题的否定,可判断D.
解答 解:“直线mx+(m-1)y-1=0与直线3x+my+2=0垂直”?“3m+m(m-1)=0”?“m=-2,或m=0”,
故“m=-2”是“直线mx+(m-1)y-1=0与直线3x+my+2=0垂直”的充分不必要条件,故A正确;
“|x-2|+|x|>a”?“a<2”,故“a<1”是“|x-2|+|x|>a”恒成立的充分不必要条件,故B错误;
设p,q是两个命题,若¬(p∧q)是假命题,则p∧q为真命题,则p,q均为真命题,故C正确;
命题p:“?x∈R,使得x2+x+1<0”,则¬p:“?x∈R,均有x2+x+1≥0”,故D正确;
故选:B.
点评 本题以命题的真假判断与应用为载体,考查了复合命题,直线的位置关系,充要条件,特称命题的否定等知识点,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,2) | B. | (-∞,-2)∪(0,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-2,0]∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 已知两个平面α,β,若两条异面直线m,n满足m?α,n?β且m∥β,n∥α,则α∥β | |
| B. | 已知a∈R,则“a<1”是“|x-2|+|x|>a”恒成立的必要不充分条件 | |
| C. | 设p,q是两个命题,若¬(p∧q)是假命题,则p,q均为真命题 | |
| D. | 命题p:“?x∈R,使得x2+x+1<0”,则¬p:“?x∈R,均有x2+x+1≥0” |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ab≤1 | B. | a2+b2≥2 | C. | $\sqrt{a}$+$\sqrt{b}$≤$\sqrt{2}$ | D. | $\frac{1}{a}$+$\frac{1}{b}$≥2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com