精英家教网 > 高中数学 > 题目详情

.如图:正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.

(1)求证:A1C//平面AB1D;
(2)求二面角B—AB1—D的大小;
3)求点C到平面AB1D的距离.

.过O作OH⊥面ABV,连结VH,
面VAB⊥面ABCD,OH⊥AB,OH⊥面ABV,∴OVH就是VO与VAB所成的角,
∴tan﹤VOH=,∴﹤VOH=300
(2)过B作BM⊥VA,连接MC,∴﹤CMB为B-VA-C的平面角,
∴ tan﹤CMB = ,∴﹤CMB="arctan"
(3)VV—ABCD=  SABCDH= a2 a= a3

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1的各棱长(包括底面边长)都是2,E,F分别是AB,A1C1的中点,则EF与侧棱C1C所成的角的余弦值是(  )
A、
5
5
B、
2
5
5
C、
1
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正三棱柱ABC-A1B1C1中,已知AB=AA1,M为CC1的中点.
(Ⅰ)求证:BM⊥AB1
(Ⅱ)试在棱AC上确定一点N,使得AB1∥平面BMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1中,E是AC中点.
(1)求证:平面BEC1⊥平面ACC1A1
(2)若AA1=
2
,AB=2,求点A到平面BEC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•北京)如图,正三棱柱ABC-A1B1C1中,D是BC的中点,AB=a.
(Ⅰ)求证:直线A1D⊥B1C1
(Ⅱ)求点D到平面ACC1的距离;
(Ⅲ)判断A1B与平面ADC1的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1中,已知AB=A1A,D为C1C的中点,O为A1B与AB1的交点.
(1)求证:AB1⊥平面A1BD;
(2)若E为AO上的动点,且EC∥平面A1BD,求
AEAO
的值.

查看答案和解析>>

同步练习册答案