精英家教网 > 高中数学 > 题目详情
13.已知函数f (x)的定义域为[0,2],则f (2x-1)的定义域[$\frac{1}{2}$,$\frac{3}{2}$].

分析 由题意得不等式0≤2x-1≤2,解出即可.

解答 解:∵0≤2x-1≤2,
∴$\frac{1}{2}$≤x≤$\frac{3}{2}$,
故答案为:[$\frac{1}{2}$,$\frac{3}{2}$].

点评 本题考查了函数的定义域问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和公式是Sn=5n2+3n,
(1)求数列{an}的通项公式
(2)判断该数列是不是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)求$f(x)=tan(3x-\frac{π}{4})$的定义域
(2)函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)的部分图象如图所示,求f(0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知关于x的不等式x2+2ax+b2≤0的解集为A.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求A不为空集的概率;
(2)若a是从区间[0,3]上任取的一个数,b是从区间[0,2]上任取的一个数,求A不为空集的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)是定义在[-1,1]上的奇函数,若m,n∈[-1,1],m+n≠0时,有$\frac{f(m)+f(n)}{m+n}$>0,则不等式$f(x+\frac{1}{2})<f(1-x)$的解集为$[0,\frac{1}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中正确的个数是(  )
①若一条直线平行于一个平面,则这条直线与平面内的任意直线都不相交
②过平面外一点有且只有一条直线与该平面平行;
③若一条直线和一个平面平行,则该平面内只有一条直线和该直线平行.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数y=f(x)是定义在(0,+∞)上的增函数,并满足f(x,y)=f(x)+f(y),f(4)=1
(1)求f(1)的值;
(2)若存在实数m,使f(m)=2,求m的值
(3)如果f(x2-4x-5)<2求x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设抛物线Γ:x2=2py(p>0)的准线被圆O:x2+y2=4所截得的弦长为$\sqrt{15}$
(Ⅰ)求抛物线Γ的方程;
(Ⅱ)设点F是抛物线Γ的焦点,N为抛物线Γ上的一动点,过N作抛物线Γ的切线交圆O于P、Q两点,求△FPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,设倾斜角为α的直线l的参数方程为$\left\{\begin{array}{l}{x=3+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数)与曲线C:$\left\{\begin{array}{l}{x=\frac{1}{cosθ}}\\{y=tanθ}\end{array}\right.$(θ为参数)相交于不同的两点A,B.
(1)若$α=\frac{π}{3}$,求线段AB的中点的直角坐标;
(2)若直线l的斜率为2,且过已知点P(3,0),求|PA|•|PB|的值.

查看答案和解析>>

同步练习册答案