精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= (﹣3x2+3f′(2))dx,则f′(2)=

【答案】6
【解析】解:f(x)= (﹣3x2+3f′(2))dx=(﹣x3+3f′(2)x) =﹣x3+3f′(2)x
∴f′(x)=﹣3x2+3f′(2),
∴f′(2)=﹣12+3f′(2),
∴f′(2)=6,
所以答案是:6.
【考点精析】根据题目的已知条件,利用基本求导法则和定积分的概念的相关知识可以得到问题的答案,需要掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导;定积分的值是一个常数,可正、可负、可为零;用定义求定积分的四个基本步骤:①分割;②近似代替;③求和;④取极限.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an},其前n项和为Sn
(1)若{an}是公差为d(d>0)的等差数列,且{ }也为公差为d的等差数列,求数列{an}的通项公式;
(2)若数列{an}对任意m,n∈N* , 且m≠n,都有 =am+an+ ,求证:数列{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设两个分类变量XY,它们的可能取值分别为{x1x2}{y1y2},其列联表为:

分类

y1

y2

总计

x1

a

b

ab

x2

c

d

cd

总计

ac

bd

abcd

对于同一样本的以下各组数据,能说明XY有关的可能性最大的一组为(  )

A. a=5,b=4,c=3,d=2 B. a=5,b=3,c=4,d=2

C. a=2,b=3,c=4,d=5 D. a=2,b=3,c=5,d=4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一块边长为的正三角形薄铁片,按如图所示设计方案,裁剪下三个全等的四边形(每个四边形中有且只有一组对角为直角),然后用余下的部分加工制作成一个“无盖”的正三棱柱(底面是正三角形的直棱柱)形容器.

(Ⅰ)请将加工制作出来的这个“无盖”的正三棱柱形容器的容积表示为关于的函数,并标明其定义域;

(Ⅱ)若加工人员为了充分利用边角料,考虑在加工过程中,使用裁剪下的三个四边形材料恰好拼接成这个正三棱柱形容器的“顶盖”.

(1)请指出此时的值(不用说明理由),并求出这个封闭的正三棱柱形容器的侧面积

(2)若还需要在该正三棱柱形容器中放入一个金属球体,试求该金属球体的最大体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1= ,an+1=an2﹣an+1(n∈N*),则m= + +…+ 的整数部分是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,武汉市出现了非常严重的雾霾天气,而燃放烟花爆竹会加重雾霾,是否应该全面禁放烟花爆竹已成为人们议论的一个话题.武汉市环保部门就是否赞成禁放烟花爆竹,对400位老年人和中青年市民进行了随机问卷调查,结果如下表:

赞成禁放

不赞成禁放

合计

老年人

60

140

200

中青年人

80

120

200

合计

140

260

400

附:K2=

P(k2>k0

0.050

0.025

0.010

k0

3.841

5.024

6.635


(1)有多大的把握认为“是否赞成禁放烟花爆竹”与“年龄结构”有关?请说明理由;
(2)从上述不赞成禁放烟花爆竹的市民中按年龄结构分层抽样出13人,再从这13人中随机的挑选2人,了解他们春节期间在烟花爆竹上消费的情况.假设一位老年人花费500元,一位中青年人花费1000元,用X表示它们在烟花爆竹上消费的总费用,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚骰子先后抛掷两次,观察向上的点数

(1)求点数之和是5的概率;

(2)设ab分别是将一枚骰子先后抛掷两次向上的点数,求等式成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣a|+|x﹣1|.
(1)当a=3时,求不等式f(x)≥2的解集;
(2)若f(x)≥5﹣x对x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn满足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差数列.
(1)求a1的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案