精英家教网 > 高中数学 > 题目详情
sin(θ+5π)cos(-
π
2
-θ)•cos(8π-θ)
sin(θ-
2
)•sin(-θ-4π)
=
4
5
,求tanθ的值.
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:利用诱导公式化简已知表达式,利用同角三角函数的基本关系式求解即可.
解答: 解:
sin(θ+5π)cos(-
π
2
-θ)•cos(8π-θ)
sin(θ-
2
)•sin(-θ-4π)
=
sinθsinθ•cosθ
cosθ•sinθ
=sinθ=
4
5

∴cosθ=±
3
5

tanθ=
sinθ
cosθ
4
3
点评:本题考查诱导公式的应用,同角三角函数的基本关系式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知-
π
2
<α<0,sinα=-
4
5

(1)求tanα的值;
(2)求cos2α+sin(
π
2
-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b为非零常数,函数f(x)=-x2+ax+blnx.
(Ⅰ)若函数在点(1,f(1))处的切线方程为4x-y-3=0,求a,b的值;
(Ⅱ)已知b>0,求证:函数图象上任意两点处的切线不可能平行;
(Ⅲ)若函数y=f(x)的两个极值点为x1,x2,且x1∈(0,1),x2∈(1,2),求a2-a+b2+b+1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,A(2,-1),B(3,2),C(-3,-1),AD为BC边上的高,求|
AD
|与点D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区的一个季节下雨天的一个季节下雨天的概率是0.3,气象台预报天气的准确率为0.8.某厂生产的产品当天怕雨,若下雨而不做处理,每天会损失3 000元,若对当天产品作防雨处理,可使产品不受损失,费用是每天500元.
(1)若该厂任其自然不作防雨处理,写出每天损失ξ的概率分布,并求其平均值;
(2)若该厂完全按气象预报作防雨处理,以η表示每天的损失,写出η的概率分布.计算η的平均值,并说明按气象预报作防雨处理是否是正确的选择?

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)(
2
3
-2+(1-
2
0-(3
3
8
 
2
3
-160.75       
(2)
2lg2+lg3
1+
1
2
lg0.36+
1
3
lg8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)满足条件f(-x+5)=f(x-3),f(2)=0,且方程f(x)=x有等根
(1)求a,b,c;
(2)是否存在实数m,n(m<n),使得函数f(x)在定义域为[m,n]值域为[3m,3n].如果存在,求出m,n的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2ex-ax-2(a∈R)
(1)讨论函数的单调性;
(2)若f(x)≥0恒成立,证明:x1<x2时,
f(x2)-f(x1)
x2-x1
>2(e x1-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=ax(a>0且a≠1)在[0,1]上的最大值与最小值的和为4,则a=
 

查看答案和解析>>

同步练习册答案