精英家教网 > 高中数学 > 题目详情
如图甲,在直角梯形中,的中点. 现沿把平面折起,使得(如图乙所示),分别为边的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面平面
(Ⅲ)在上找一点,使得平面.
(Ⅰ)证:因为PA⊥AD,PA⊥AB,,所以平面…4分
(Ⅱ)证:因为,A是PB的中点,所以ABCD是矩形,又E为BC边的中点,所以AE⊥ED。又由平面,得,且,所以平面,而平面
故平面平面……………………………………………9分
(Ⅲ)过点,再过,连结
,平面,得∥平面
平面,得∥平面
,所以平面∥平面…………………………12分
再分别取的中点,连结,易知的中点,的中点,
从而当点满足时,有平面
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线a∥平面的一个充分条件是(   )
A.存在一条直线bbab
B.存在一个平面
C.存在一个平面a
D.存在一条直线bab

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分8分)在直三棱柱中,分别为棱的中点,为棱上的点。
(1)证明:
(2) 当时,求二面角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.

(1)证明:DN//平面PMB;
(2)证明:平面PMB平面PAD;
(3)求点A到平面PMB的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,在六面体中,平面∥平面平面,,,且,

(1)求证:平面平面
(2)求证:∥平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD, E、F分别是PC、PD的中点,求证:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


.如图,在四面体中, 平行于截面

(1)若,证明∥平面
(2)若,猜想三条直线位置关系,并证明之.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=

(1)求证:BC⊥SC; (2)设棱SA的中点为M,求证:DM⊥SB.

查看答案和解析>>

同步练习册答案