精英家教网 > 高中数学 > 题目详情
5.等差数列{an}中,已知a7=-8,a17=-28.
(1)求数列{an}的通项公式;  
(2)求Sn的最大值.

分析 (1)利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出数列{an}的通项公式.
(2)由${S}_{n}=-{n}^{2}+5n$=-(n-$\frac{5}{2}$)2+$\frac{25}{4}$,能求出Sn的最大值.

解答 解:(1)设等差数列{an}中首项为a1,公差为d.
因为a7=-8,a17=-28,
所以$\left\{\begin{array}{l}{{a}_{1}+6d=-8}\\{{a}_{1}+16d=-28}\end{array}\right.$,
解得a1=4,d=-2,
所以an=a1+(n-1)d=-2n+6.
(2)由(1)可得${S}_{n}=-{n}^{2}+5n$=-(n-$\frac{5}{2}$)2+$\frac{25}{4}$,
所以当n=2或n=3时,Sn取得最大值.
(Snmax=-22+2×5=-32+3×5=6.

点评 本题考查等差数列的通项公式的求法,考查等差数列的前n项和的最大值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.要得到函数y=2sin(2x+$\frac{π}{5}$)的图象,应该把函数y=cos(x-$\frac{2}{15}$π)-$\sqrt{3}$sin(x-$\frac{2π}{15}$)的图象做如下变换(  )
A.将图象上的每一点横坐标缩短到原来的$\frac{1}{2}$而纵坐标不变
B.沿x向左平移$\frac{π}{2}$个单位,再把得图象上的每一点横坐标伸长到原来的2而纵坐标不变
C.先把图象上的每一点横坐标缩短到原来的$\frac{1}{2}$而纵坐标不变,再将所得图象沿x向右平移$\frac{π}{4}$个单位
D.先把图象上的每一点横坐标缩短到原来的$\frac{1}{2}$而纵坐标不变,再将所得图象沿x向左平移$\frac{π}{2}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过(3,2)点的直线与坐标轴的正半轴交于A,B两点,△AOB面积的最小值12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校举行运动会,其中三级跳远的成绩在8.0米 (四舍五入,精确到0.1米) 以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.
(1)求进入决赛的人数;
(2)经过多次测试后发现,甲成绩均匀分布在8~10米之间,乙成绩均匀分布在9.5~10.5米之间,现甲,乙各跳一次,求甲比乙远的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=(x-2)(ax+b)为偶函数,且在(0,+∞)上单调递增,则f(2-x)>0的解集为{x|x<0或x>4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数 f(x)满足f(x+1)=x2-$\frac{1}{3}$f(3).
(1)求f(x)解析式;
(2)当x∈(-2,-$\frac{1}{2}$)时,不等式f(a)+4a<(a+2)f(x2)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)是可导的函数,且f′(x)<f(x)对于x∈R恒成立,则(  )
A.f(1)<ef(0),f(2017)>e2017f(0)B.f(1)>ef(0),f(2017)>e2017f(0)
C.f(1)>ef(0),f(2017)<e2017f(0)D.f(1)<ef(0),f(2017)<e2017f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.两人打靶,甲击中目标的概率为0.8,乙击中目标的概率为0.7,若两人同时射击一目标,则他们都击中目标的概率是(  )
A.0.6B.0.48C.0.75D.0.56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将直线l向左平移$\sqrt{3}$个单位,再向上平移1个单位后所得直线与l重合,则直线l的倾斜角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步练习册答案