精英家教网 > 高中数学 > 题目详情
17.已知f(x)是可导的函数,且f′(x)<f(x)对于x∈R恒成立,则(  )
A.f(1)<ef(0),f(2017)>e2017f(0)B.f(1)>ef(0),f(2017)>e2017f(0)
C.f(1)>ef(0),f(2017)<e2017f(0)D.f(1)<ef(0),f(2017)<e2017f(0)

分析 构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,利用导数判断其单调性即可得出.

解答 解:知f(x)是可导的函数,且f′(x)<f(x)对于x∈R恒成立,即f′(x)-f(x)<0恒成立,
令g(x)=$\frac{f(x)}{{e}^{x}}$,则g′(x)=$\frac{{e}^{x}f′(x)-{e}^{x}f(x)}{{e}^{2x}}$=$\frac{f′(x)-f(x)}{{e}^{x}}$<0.
∴函数g(x)在R上单调递减.
∴g(1)<g(0),g(2017)<g(0).
即$\frac{f(1)}{e}<\frac{f(0)}{1}$,$\frac{f(2017)}{{e}^{2017}}$<$\frac{f(0)}{1}$,
化为f(1)<ef(0),f(2017)<e2017f(0).
故选:D.

点评 本题是一个知识点交汇的综合题,考查综合运用函数思想解题的能力.恰当构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,利用导数判断其单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足a1=3,an+1=an2+2an,n∈N*,设bn=log2(an+1).
(I)求{an}的通项公式;
(II)求证:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{{b}_{n}-1}$<n(n≥2);
(III)若${2^{c_n}}$=bn,求证:2≤${(\frac{{{c_{n+1}}}}{c_n})^n}$<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设AB是双曲线Γ的实轴,点C在Γ上,且∠CAB=$\frac{π}{4}$,若AB=4,BC=$\sqrt{26}$,则双曲线的焦距是4$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.等差数列{an}中,已知a7=-8,a17=-28.
(1)求数列{an}的通项公式;  
(2)求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-2x+3.
(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立?并说明理由;
(2)若存在实数x,使不等式m-f(x)>0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n∈N*),b1+$\frac{1}{2}$b2+$\frac{1}{3}$b3+…+$\frac{1}{{b}_{n}}$=bn+1-1(n∈N*).
(Ⅰ)求an与bn
(Ⅱ)记数列{anbn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知α为第二象限的角,sinα=$\frac{1}{2}$,β为第一象限的角,cosβ=$\frac{3}{5}$. 则tan(2α-β)的值为(  )
A.$\frac{{48+25\sqrt{3}}}{39}$B.$\frac{{48-25\sqrt{3}}}{39}$C.$-\frac{{48+25\sqrt{3}}}{39}$D.$-\frac{{48-25\sqrt{3}}}{39}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}a{x^2}+3,x≥0\\({a+2}){e^{ax}},x<0\end{array}$为R上的单调函数,则实数a的取值范围是(  )
A.[-1,0)B.(0,1]C.(-2,0)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆的中心在原点,左焦点为F1(-$\sqrt{3}$,0),且右顶点为D(2,0).设点A的坐标是(1,$\frac{1}{2}$)
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程.

查看答案和解析>>

同步练习册答案