精英家教网 > 高中数学 > 题目详情
10.曲线y=e-x+1在点(0,2)处的切线方程为x+y-2=0.

分析 利用导数的几何意义可求出切线的斜率,进而即可求出切线的方程.

解答 解:由题意可知切点P(0,2).
∵f′(x)=-e-x,∴切线的斜率k=f′(0)=-1.
∴要求的切线方程为y-2=-1×(x-0),化为x+y-2=0.
故答案为:x+y-2=0.

点评 熟练掌握导数的几何意义和直线的点斜式方程是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列说法中:
①平行于同一直线的两个平面平行;
 ②平行于同一平面的两个不同平面平行;
③垂直于同一直线的两条直线平行; 
④垂直于同一平面的两条不重合直线平行;
其中正确的说法个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A,B是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个顶点,若P双曲线上一点,P关于x轴对称点为Q,若直线AP,BQ的斜率分别K1,K2且K1K2=-$\frac{4}{9}$,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{13}}{2}$D.$\frac{\sqrt{13}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若点O和点F分别为椭圆3x2+4y2=12的中心和左焦点,点P为椭圆上任意一点,则$\overrightarrow{OP}•\overrightarrow{FP}$最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.向高为H的水瓶A、B、C、D中同时以等速注水,注满为止,若水量V与水深h的函数的图象如图,则水瓶的形状为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于无穷数列{Tn},若正整数n0,使得n≥n0(n∈N*)时,有Tn+1>Tn,则称{Tn}为“n0~不减数列”.
(1)设s,t为正整数,且s>t,甲:{xn}为“s~不减数列”,乙:{xn}为“t~不减数列”.
试判断命题:“甲是乙的充分条件”的真假,并说明理由;
(2)已知函数y=f(x)与函数y=-$\frac{1}{x}$+2的图象关于直线y=x对称,数列{an}满足a1=3,an+1=f(an)(n∈N*),如果{an}为“n0~不减数列”,试求n0的最小值;
(3)设yn=$\left\{\begin{array}{l}{f(\frac{4}{3}),(n=1)}\\{(\frac{1}{{2}^{n}}+1)cosnπ,(n≥2,n∈{N}^{*})}\end{array}\right.$,且xn-λyn=2n,是否存在实数λ使得{xn}为“$\frac{1}{2}$f(f($\frac{4}{3}$))~不减数列”?若存在,求出λ的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点$(0\;,\;\sqrt{2})$,且满足a+b=3$\sqrt{2}$.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 斜率为$\frac{1}{2}$的直线交椭圆C于两个不同点A,B,点M的坐标为(2,1),设直线MA与MB的斜率分别为k1,k2
①若直线过椭圆C的左顶点,求此时k1,k2的值;
②试探究k1+k2是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=x3+$\frac{3}{2}$x2-6x+c,若x∈[0,2]都有f(x)>2c-$\frac{1}{2}$恒成立,则c的取值范围是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对于数列{an},称$P({a_k})=\frac{1}{k-1}(|{{a_1}-{a_2}}|+|{{a_2}-{a_3}}|+…+|{{a_{k-1}}-{a_k}}|)$(其中k≥2,k∈N)为数列{an}的前k项“波动均值”.若对任意的k≥2,k∈N,都有P(ak+1)<P(ak),则称数列{an}为“趋稳数列”.
(1)若数列1,x,2为“趋稳数列”,求x的取值范围;
(2)若各项均为正数的等比数列{bn}的公比q∈(0,1),求证:{bn}是“趋稳数列”;
(3)已知数列{an}的首项为1,各项均为整数,前k项的和为Sk.且对任意k≥2,k∈N,都有3P(Sk)=2P(ak),试计算:$C_n^2P({a_2})+2C_n^3P({a_3})+…+(n-1)C_n^nP({a_n})$(n≥2,n∈N).

查看答案和解析>>

同步练习册答案