已知函数f(x)=ax-1-lnx(a∈R).
(1)讨论函数f(x)在定义域内的极值点的个数;
(2)若函数f(x)在x=1处取得极值,对∀x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围;
(3)当0<x<y<e2且x≠e时,试比较与的大小.
[解析] (1)f ′(x)=a-=,当a≤0时,f ′(x)≤0在(0,+∞)上恒成立,函数f(x)在(0,+∞)上单调递减,
∴f(x)在(0,+∞)上没有极值点;
当a>0时,由f ′(x)≤0得0<x≤,
由f ′(x)≥0得x≥,
∴f(x)在(0,]上单调递减,在[,+∞)上单调递增,∴f(x)在x=处有极小值.
∴当a≤0时f(x)在(0,+∞)上没有极值点,
当a>0时,f(x)在(0,+∞)上有一个极值点.
(2)∵函数f(x)在x=1处取得极值,∴a=1,
∴f(x)≥bx-2⇔1+-≥b,
令g(x)=1+-,则g′(x)=--=,由g′(x)≥0得x≥e2,
由g′(x)≤0得0<x≤e2,因此可得g(x)在(0,e2]上单调递减,在[e2,+∞)上单调递增,
∴g(x)min=g(e2)=1-,即b≤1-.
(3)令h(x)=-=g(x)-1,
由(2)可知g(x)在(0,e2)上单调递减,则h(x)在(0,e2)上单调递减
∴当0<x<y<e2时,h(x)>h(y),即>.
当0<x<e时,1-lnx>0,∴>,
当e<x<e2时,1-lnx<0,∴<.
科目:高中数学 来源:2012-2013学年江西省南昌市高一5月联考数学卷(解析版) 题型:解答题
已知函数f(x)= (a、b为常数),且方程f(x)-x+12=0有两个实根为x1=3,x2=4.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式f(x)< .
查看答案和解析>>
科目:高中数学 来源:2015届辽宁盘锦市高一第一次阶段考试数学试卷(解析版) 题型:解答题
(12分)已知函数f(x)= (a,b为常数,且a≠0),满足f(2)=1,方程f(x)=x有唯一实数解,求函数f(x)的解析式和f[f(-4)]的值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省莱芜市高三上学期10月测试理科数学 题型:解答题
(本小题满分l2分)
已知函数f(x)=a-
(1)求证:函数y=f(x)在(0,+∞)上是增函数;
(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖南省十二校高三第一次联考数学文卷 题型:解答题
( (本小题满分13分)
已知函数f(x)=(a-1)x+aln(x-2),(a<1).
(1)讨论函数f(x)的单调性;
(2)设a<0时,对任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届黑龙江省高一期末考试文科数学 题型:解答题
(12分)已知函数f(X)=㏒a(ax-1) (a>0且a≠1)
(1)求函数的定义域 (2)讨论函数f(X)的单调性
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com