【题目】小赵和小王约定在早上
至
之间到某公交站搭乘公交车去上学,已知在这段时间内,共有
班公交车到达该站,到站的时间分别为
,
,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为__________.
科目:高中数学 来源: 题型:
【题目】设函数
是定义在
上的函数,并且满足下面三个条件:(1)对正数
,都有
;(2)当
时,
;(3)
;
(1)求
和
的值;
(2)如果不等式
成立,求
的取值范围;
(3)如果存在正数
,使不等式
有解,求正数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元。
(1)分别写出两类产品的收益与投资额的函数关系式;
(2)该家庭现有20万元资金,全部用于理财投资,怎样分配资金才能获得最大收益?其最大收益为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族
中的成员仅以自驾或公交方式通勤.分析显示:当
中
(
)的成员自驾时,自驾群体的人均通勤时间为
(单位:分钟),而公交群体的人均通勤时间不受
影响,恒为
分钟,试根据上述分析结果回答下列问题:
(1)当
在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族
的人均通勤时间
的表达式;讨论
的单调性,并说明其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如下表:
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入 | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
对变量
与
进行相关性检验,得知
与
之间具有线性相关关系.
(1)求
关于
的线性回归方程;
(2)预测该地区2017年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
经过点
,其倾斜角为
,以原点
为极点,以
轴为非负半轴为极轴,与坐标系
取相同的长度单位,建立极坐标系.设曲线
的极坐标方程为
.
(1)若直线
与曲线
有公共点,求倾斜角
的取值范围;
(2)设
为曲线
上任意一点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为
,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为
,现从
、
、
、
、
中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com