精英家教网 > 高中数学 > 题目详情
5.已知抛物线C:y2=4x,过点A(-1,0)的直线交抛物线C于P(x1,y1),Q(x2,y2)两点,设$\overrightarrow{AP}=λ\overrightarrow{AQ}$.
(Ⅰ)试求x1,x2的值(用λ表示);
(Ⅱ)若λ∈[$\frac{1}{3}$,$\frac{1}{2}$],求当|PQ|最大时,直线PQ的方程.

分析 (Ⅰ)由向量的数量积的坐标表示可得x1+1=λ(x2+1),y1=λy2,代入抛物线方程可得:λ2x2+1=λ(x2+1),λx2(λ-1)=(λ-1),即可求得x2=$\frac{1}{λ}$,x1=λ;
(Ⅱ)由题意可得x1•x2=1,${y}_{1}^{2}$•${y}_{2}^{2}$=16,求得y1•y2=4,根据两点之间的距离公式求得|PQ|的表达式,由λ∈[$\frac{1}{3}$,$\frac{1}{2}$],根据二次函数的性质即可求得|PQ|最大值,求得λ的值,求得P和Q的坐标,求得直线PQ的方程.

解答 解:(Ⅰ).设P(x1,y1),Q(x2,y2),M(x1,-y1
∵$\overrightarrow{AP}=λ\overrightarrow{AQ}$,
∴x1+1=λ(x2+1),y1=λy2
∴y122y22,y12=4x1,y22=4x2,x12x2
∴λ2x2+1=λ(x2+1),λx2(λ-1)=(λ-1),
∵λ≠1,
∴x2=$\frac{1}{λ}$,x1=λ,…5分)
(Ⅱ)由(Ⅰ)知:${x_2}=\frac{1}{λ},{x_1}=λ$,从而x1•x2=1,${y}_{1}^{2}$•${y}_{2}^{2}$=16,x1•x2=16,
从而有y1•y2=4,
则$|PQ{|^2}={({x_1}-{x_2})^2}+{({y_1}-{y_2})^2}={λ^2}+\frac{1}{λ^2}+4(λ+\frac{1}{λ})-10={(λ+\frac{1}{λ})^2}+4(λ+\frac{1}{λ})-12$…(9分)
由于λ∈[$\frac{1}{3}$,$\frac{1}{2}$],则$λ+\frac{1}{λ}∈[\frac{5}{2},\frac{10}{3}]$,
根据二次函数的知识得:当λ+$\frac{1}{λ}$=$\frac{10}{3}$,即λ=$\frac{1}{3}$时,|PQ|有最大值$\frac{4\sqrt{7}}{3}$,…(11分)
此时P($\frac{1}{3}$,±$\frac{2\sqrt{3}}{3}$),Q(3,±2$\sqrt{3}$),
直线PQ的方程为:$\sqrt{3}x±2y+\sqrt{3}=0$…(13分)

点评 本题考查抛物线的标准方程,直线与抛物线的位置关系,考查二次函数的图象及性质,直线方程,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知球O是棱长为1的正方体ABCD-A1B1C1D1的内切球,则以B1为顶点,以平面ACD1被球O所截得的圆为底面的圆锥的全面积为$\frac{2π}{3}$.(圆锥全面积S=πr(l+r),其中r为圆锥的底面半径,l为母线长)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,且$a=\frac{1}{2}$,a+b+c=sinA+sinB+sinC.
(1)求角A的大小;
(2)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若向量$\overrightarrow a$=(1,2,0),$\overrightarrow b$=(-2,0,1),则(  )
A.cos<$\overrightarrow{a}$,$\overrightarrow b$>=120°B.$\overrightarrow a$⊥$\overrightarrow b$C.$\overrightarrow{a}$∥$\overrightarrow b$D.|$\overrightarrow a$|=|$\overrightarrow b$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数y=f(x)对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy,f(1)=1
(Ⅰ)分别求f(2),f(3),f(4)的值;
(Ⅱ)猜想f(n)(n∈N*)的表达式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+2tx+{t^2},x≤0\\ x+\frac{1}{x}+t,x>0\end{array}$,若f(0)是f(x)的最小值,则t的取值范围为(  )
A.[-1,2]B.[-1,0]C.[1,2]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出以下四个命题:
①若集合A={x,y},B={0,x2},A=B,则x=1,y=0;
②若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
③函数f(x)=$\frac{1}{x}$的单调递减区间是(-∞,0)∪(0,+∞);
④已知集合P={a,b},Q={-1,0,1},则映射f:P→Q中满足f(b)=0的映射共有3个.
其中正确的命题有①④(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数 y=lg(kx2+4x+k+3)的定义域为R,则实数k的取值范围(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知两定点F1(5,0),F2(-5,0),曲线上的点P到F1、F2的距离之差的绝对值是6,则该曲线的方程为$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1.

查看答案和解析>>

同步练习册答案