分析 (1)先去掉绝对值,化简函数的解析式,分类讨论求得f(x)≥2的解集.
(2)根据函数的解析式求得函数f(x)的最小值,再利用基本不等式求得a2+b2的最小值.
解答 解:(1)∵f(x)=|2x-1|+|x+1|=$\left\{\begin{array}{l}{-3x,x<-1}\\{-x+2,-1≤x≤\frac{1}{2}}\\{3x,x>\frac{1}{2}}\end{array}\right.$,
由$\left\{{\begin{array}{l}{-3x≥2}\\{x<-1}\end{array}}\right.⇒x<-1$;由$\left\{{\begin{array}{l}{-1≤x≤\frac{1}{2}}\\{-x+2≥2}\end{array}}\right.⇒-1≤x≤0$;由$\left\{{\begin{array}{l}{x>\frac{1}{2}}\\{3x≥2}\end{array}}\right.⇒x≥\frac{2}{3}$,
∴不等式f(x)≥2的解集为$\left\{{x|x≤0或x≥\frac{2}{3}}\right\}$.
(2)由函数f(x)的定义域为R,根据函数的解析式可知,当$x=\frac{1}{2}$时,函数f(x)的最小值为$f({\frac{1}{2}})=\frac{3}{2}$,
故有 $a+b=\frac{3}{2},{({a+b})^2}={a^2}+{b^2}+2ab≤2({{a^2}+{b^2}})$,可得${a^2}+{b^2}≥\frac{9}{8}$,当且仅当a=b时,取等号,
所以a2+b2的最小值为$\frac{9}{8}$.
点评 本题主要考查带有绝对值的函数,绝对值不等式的解法,基本不等式的应用,体现了转化、分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{1}{2},\frac{2}{3}}]$ | B. | $({\frac{2}{3},\frac{3}{4}}]$ | C. | $({\frac{3}{4},\frac{4}{5}}]$ | D. | $({\frac{4}{5},\frac{5}{6}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60° | B. | 120° | C. | 60°或120° | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com