相关习题
 0  15195  15203  15209  15213  15219  15221  15225  15231  15233  15239  15245  15249  15251  15255  15261  15263  15269  15273  15275  15279  15281  15285  15287  15289  15290  15291  15293  15294  15295  15297  15299  15303  15305  15309  15311  15315  15321  15323  15329  15333  15335  15339  15345  15351  15353  15359  15363  15365  15371  15375  15381  15389  266669 

科目: 来源:不详 题型:解答题

2005年10月12日,我国成功发射了“神州”六号载人飞船,这标志着中国人民又迈出了具有历史意义的一步.已知火箭的起飞重量M是箭体(包括搭载的飞行器)的重量m和燃料重量x之和.在不考虑空气阻力的条件下,假设火箭的最大速度y关于x的函数关系式为:y=k[ln(m+x)-ln(
2
m)]+4ln2(其中k≠0)
.当燃料重量为(
e
-1)m
吨(e为自然对数的底数,e≈2.72)时,该火箭的最大速度为4(km/s).
(1)求火箭的最大速度y(km/s)与燃料重量x吨之间的函数关系式y=f(x);
(2)已知该火箭的起飞重量是544吨,是应装载多少吨燃料,才能使该火箭的最大飞行速度达到8km/s,顺利地把飞船发送到预定的轨道?

查看答案和解析>>

科目: 来源:不详 题型:解答题

某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p(万元)和宿舍与工厂的距离x(km)的关系为:p=
k
3x+5
(0≤x≤8)
,若距离为1km时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设f(x)为建造宿舍与修路费用之和.
(I)求f(x)的表达式;
(II)宿舍应建在离工厂多远处,可使总费用f(x)最小,并求最小值.

查看答案和解析>>

科目: 来源:不详 题型:单选题

已知a=21.2b=(
1
2
)-0.2
,c=log54,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目: 来源:不详 题型:解答题

某化工厂生产的某种化工产品,当年产量在150吨至250吨之间,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可近似地表示为y=
1
10
x2-30x+4000

问:
(1)年产量为多少吨时,每吨的平均成本最低?并求出最低成本?
(2)若每吨平均出厂价为16万元,则年产量为多少吨时,可获得最大利润?并求出最大利润?

查看答案和解析>>

科目: 来源:不详 题型:填空题

设g(x)=
2x+1,(x≤0)
log2x,(x>0)
若g(x)≥1,则x取值范围是______..

查看答案和解析>>

科目: 来源:不详 题型:解答题

某房屋开发公司用128万元购得一块土地,欲建成不低于五层的楼房一幢,该楼每层的建筑面积为1000平方米,楼房的总建筑面积(即各层面积之和)的每平方米的平均建筑费用与楼层有关,若该楼建成x层时,每平方米的平均建筑费用用f(x)表示,且f(n)=f(m)(1+
n-m
20
)(其中n>m,n∈N),又知建成五层楼房时,每平方米的平均建筑费用为400元,为了使该楼每平方米的综合费用最省(综合费用是建筑费用与购地费用之和),公司应把该楼建成几层?

查看答案和解析>>

科目: 来源:不详 题型:解答题

设函数f(x)=3
4+3x-x2

(1)求函数的定义域;
(2)求函数的值域;
(3)求函数的单调区间.

查看答案和解析>>

科目: 来源:不详 题型:单选题

设x>0,且1<bx<ax,则(  )
A.0<b<a<1B.0<a<b<1C.1<b<aD.1<a<b

查看答案和解析>>

科目: 来源:不详 题型:填空题

某个体户在进一批服装时,进价已经按原价打了七五折,他打算对该批服装定一新价标在价目卡上,并注明按该价降价20%销售,这样仍可获得25%的纯利润,求这个个体户给这批服装定的新标价与原价之间的函数关系______.

查看答案和解析>>

科目: 来源:不详 题型:解答题

设a>0,a≠1,若函数y=a2x+2ax-1在区间[-1,1]上的最大值是14,求a的值.

查看答案和解析>>

同步练习册答案