相关习题
 0  16688  16696  16702  16706  16712  16714  16718  16724  16726  16732  16738  16742  16744  16748  16754  16756  16762  16766  16768  16772  16774  16778  16780  16782  16783  16784  16786  16787  16788  16790  16792  16796  16798  16802  16804  16808  16814  16816  16822  16826  16828  16832  16838  16844  16846  16852  16856  16858  16864  16868  16874  16882  266669 

科目: 来源:江苏模拟题 题型:解答题

已知函数f(x)=x2-(2a+1)x+alnx,
(Ⅰ)当a=1时,求函数f(x)的单调增区间;
(Ⅱ)求函数f(x)在区间[1,e]上的最小值;
(Ⅲ)设g(x)=(1-a)x,若存在使得f(x0)≥g(x0)成立,求实数a的取值范围。

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

设函数f(x)=x(ex-1)-ax2
(Ⅰ)若a=,求f(x)的单调区间;
(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围。

查看答案和解析>>

科目: 来源:重庆市高考真题 题型:解答题

已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f′(x)是奇函数,
(Ⅰ)求f(x)的表达式;
(Ⅱ)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值与最小值.

查看答案和解析>>

科目: 来源:湖南省高考真题 题型:解答题

已知函数f(x)=+x+(a-1)lnx+15a,其中a<0,且a≠-1.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)设函数(e是自然对数的底数)。是否存在a,使g(x)在[a,-a]上为减函数?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:安徽省高考真题 题型:解答题

设函数f(x)=sinx-cosx+x+1,0<x<2π,求函数f(x)的单调区间与极值。

查看答案和解析>>

科目: 来源:江苏高考真题 题型:解答题

设f(x)是定义在区间(1,+∞)上的函数,其导函数为f(x)。如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a)。
(I)设函数,其中b为实数。
(i)求证:函数f(x)具有性质P(b);
(ii)求函数f(x)的单调区间;
(Ⅱ)已知函数g(x)具有性质P(2)。给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|< |g(x1)-g(x2)|,求m的取值范围。

查看答案和解析>>

科目: 来源:0103 期中题 题型:解答题

函数f(x)=x3-mx2+(m2-4)x,x∈R。
(1)当m=3时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)已知函数f(x)有三个互不相同的零点0,α ,β,且α<β。若对任意的x∈[α ,β],都有f(x)≥f(1)恒成立,求实数m的取值范围。

查看答案和解析>>

科目: 来源:高考真题 题型:解答题

设函数f(x)=x3-(1+a)x2+4ax+24a,其中常数a>1.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源:福建省高考真题 题型:解答题

已知函数f(x)=x3-x2+ax+b的图象在点P(0,f(0))处的切线方程为y=3x-2。
(I)求实数a,b的值;
(Ⅱ)设g(x)=f(x)+是[2,+∞)上的增函数。
 (i)求实数m的最大值;
 (ii)当m取最大值时,是否存在点Q,使得过点Q的直线若能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q 的坐标;若不存在,说明理由。

查看答案和解析>>

科目: 来源:天津高考真题 题型:单选题

设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,下面的不等式在R上恒成立的是

[     ]

A.f(x)>0
B.f(x)<0
C.f(x)>x
D.f(x)<x

查看答案和解析>>

同步练习册答案