相关习题
 0  235255  235263  235269  235273  235279  235281  235285  235291  235293  235299  235305  235309  235311  235315  235321  235323  235329  235333  235335  235339  235341  235345  235347  235349  235350  235351  235353  235354  235355  235357  235359  235363  235365  235369  235371  235375  235381  235383  235389  235393  235395  235399  235405  235411  235413  235419  235423  235425  235431  235435  235441  235449  266669 

科目: 来源: 题型:选择题

7.设集合A={x|x2-4x+3≥0},B={x|2x-3≤0},则A∪B=(  )
A.(-∞,1]∪[3,+∞)B.[1,3]C.$[{\frac{3}{2},3}]$D.$({-∞,\frac{3}{2}}]∪[{3,+∞})$

查看答案和解析>>

科目: 来源: 题型:解答题

6.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.
(1)求数列{an}的通项公式;
(2)设${b_n}={3^n}•\sqrt{a_n}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:解答题

5.某人玩掷骰子(骰子是一个质地均匀的正方体,它的各面上分别标有点数字1、2、3、4、5、6)的游戏,每轮掷两次.第n轮掷出的点数依次为xn,yn.如果$\frac{2}{x_n}+\frac{2}{y_n}<1(n=1,2,…)$,则认为第n轮游戏过关,游戏过关后,则游戏终止.如果某轮游戏不过关,则下一轮继续进行,直至过关后终止.
(Ⅰ)求游戏第一轮过关的概率;
(Ⅱ)如果游戏进行到第3轮,第3轮后不管游戏是否过关,都终止游戏.写出投掷轮数X的分布列,并求X的数学期望.

查看答案和解析>>

科目: 来源: 题型:选择题

4.若不等式x2+x+a+1≥0对一切$x∈[{0,\frac{1}{2}}]$都成立,则a的最小值为(  )
A.0B.-1C.$-\frac{5}{2}$D.$-\frac{7}{4}$

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知$sin(2π-α)=\frac{3}{5}\;,\;α∈(\frac{3}{2}π\;,\;2π)$,则$\frac{sinα+cosα}{sinα-cosα}$=-$\frac{1}{7}$.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知x=1是函数f(x)=ax3-bx-lnx(a>0,b∈R)的一个极值点,则lna与b-1的大小关系是(  )
A.lna>b-1B.lna<b-1C.lna=b-1D.以上都不对

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知f(x)=sinωx-cosωx(ω>$\frac{1}{4}$,x∈R),若f(x)的任何一条对称轴与x轴交点的横坐标都不属于区间(2π,3π),则ω的取值范围是(  )
A.[$\frac{3}{8}$,$\frac{11}{12}$]∪[$\frac{11}{8}$,$\frac{19}{12}$]B.($\frac{1}{4}$,$\frac{5}{12}$]∪[$\frac{5}{8}$,$\frac{3}{4}$]
C.[$\frac{3}{8}$,$\frac{7}{12}$]∪[$\frac{7}{8}$,$\frac{11}{12}$]D.($\frac{1}{4}$,$\frac{3}{4}$]∪[$\frac{9}{8}$,$\frac{17}{12}$]

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知A(-1,-3),B(3,5),点M在直线AB上,且|$\overrightarrow{AM}$|=$\frac{3}{2}$|$\overrightarrow{MB}$|,求$\overrightarrow{OM}$.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知全集U={x∈N|y=lg(5-x)},M={x∈Z|1≤2x≤4),N={2,3},则(∁UM)∩N=(  )
A.{2}B.{3}C.{2,3,4}D.{0,1,2,3,4}

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知幂函数y=f(x)的图象过点$(\frac{1}{2},\frac{{\sqrt{2}}}{2})$,则$log_2^{f(4)}$=1.

查看答案和解析>>

同步练习册答案