相关习题
 0  247544  247552  247558  247562  247568  247570  247574  247580  247582  247588  247594  247598  247600  247604  247610  247612  247618  247622  247624  247628  247630  247634  247636  247638  247639  247640  247642  247643  247644  247646  247648  247652  247654  247658  247660  247664  247670  247672  247678  247682  247684  247688  247694  247700  247702  247708  247712  247714  247720  247724  247730  247738  266669 

科目: 来源: 题型:解答题

12.某商场为了了解顾客的购物信息,随机的在商场收集了100位顾客购物的相关数据,整理如下:
一次购物款(单位:元)[0,50)[50,100)[100,150)[150,200)[200,+∞)
顾客人数m2030n10
统计结果显示100位顾客中购物款不低于100元的顾客共60位,据统计该商场每日大约有5000名顾客,为了增加商场销售额度,对一次性购物不低于100元的顾客发放纪念品(每人一件).
(Ⅰ)试确定m,n的值,并据上述数据估计该商场每日应准备纪念品的数量;
(Ⅱ)若商场进行让利活动,一次购物款200元及以上的一次返利30元;一次性购物款   小于200元的按购物款的百分比返利,具体见下表:
一次购物款(单位:元)[0,50)[50,100)[100,150)[150,200)
返利百分比06%8%10%
若用各组购物款的中位数估计该组的购物款,请据上述数据估计该商场日均让利多少元?

查看答案和解析>>

科目: 来源: 题型:选择题

11.某校有行政人员、教学人员和教辅人员共200人,其中教学人员与教辅人员人数的比为10:1,行政人员有24人,现采取分层抽样的方法抽取容量为50的样本,那么教学人员应抽取的人数为(  )
A.30B.40C.20D.36

查看答案和解析>>

科目: 来源: 题型:选择题

10.设$a={log_2}π,b={log_{\frac{1}{2}}}π,c=\frac{1}{π^2}$则(  )
A.a>b>cB.b>a>cC.a>c>bD.c>b>a

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知函数f(x)的反函数为g(x)=1+2x,则f(1)=(  )
A.0B.1C.2D.4

查看答案和解析>>

科目: 来源: 题型:解答题

8.己知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=1,且$\overrightarrow{a}$,$\overrightarrow{b}$满足关系:|k$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$+k$\overrightarrow{b}$|,k>0,设$\overrightarrow{a}$•$\overrightarrow{b}$=f(k)
(Ⅰ)求f(k)的解析式;
(Ⅱ)$\overrightarrow a$能否和$\overrightarrow b$垂直?$\overrightarrow a$能否和$\overrightarrow b$平行?若不能,则说明理由;若能,则求出k值.

查看答案和解析>>

科目: 来源: 题型:选择题

7.在平面直角坐标系xoy中,A、B、C是圆x2+y2=1上相异三点,若存在正实数λ,μ,使得$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,则λ2+(μ-3)2的取值范围是(  )
A.[0,+∞)B.(2,+∞)C.[2,+∞)D.(8,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

6.如图,在△ABC中,设$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AC}$=$\overrightarrow b$,AP的中点为Q,BQ的中点为R,CR的中点恰为P,则$\overrightarrow{AP}$等于(  )
A.$\frac{1}{2}(\overrightarrow a+\overrightarrow b)$B.$\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$C.$\frac{2}{7}\overrightarrow a+\frac{4}{7}\overrightarrow b$D.$\frac{4}{7}\overrightarrow a+\frac{2}{7}\overrightarrow b$

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知曲线C的极坐标方程是ρ=2cosθ,直线l的参数方程是$\left\{\begin{array}{l}x=-\frac{2}{3}t+2\\ y=\frac{2}{3}t-5\end{array}\right.$(t为参数).
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)设直线l与y轴的交点是M,N是曲线C上一动点,求MN的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.设Sn=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n×(n+1)}$,求出S1,S2,S3,S4的值,归纳并猜想出结果.并证明所猜想出结果的正确性.

查看答案和解析>>

科目: 来源: 题型:选择题

3.根据给出的数塔猜测123456×9+2等于(  )
A.111111B.1111111C.1111112D.1111110

查看答案和解析>>

同步练习册答案