相关习题
 0  247629  247637  247643  247647  247653  247655  247659  247665  247667  247673  247679  247683  247685  247689  247695  247697  247703  247707  247709  247713  247715  247719  247721  247723  247724  247725  247727  247728  247729  247731  247733  247737  247739  247743  247745  247749  247755  247757  247763  247767  247769  247773  247779  247785  247787  247793  247797  247799  247805  247809  247815  247823  266669 

科目: 来源: 题型:解答题

1.当实数m取何值时,在复平面内与复数z=(m2-4m)+(m2-m-6)i对应点满足下列条件?
(Ⅰ)在第三象限;
(Ⅱ)在直线x-y+3=0上.

查看答案和解析>>

科目: 来源: 题型:选择题

20.i为虚数单位,已知复数z和(z+2)2+8i都是纯虚数,则复数1+$\overline{z}$(  )
A.1±2iB.1+2iC.1-2iD.±2i

查看答案和解析>>

科目: 来源: 题型:选择题

19.计算$\frac{5}{i-2}$(i为虚数单位)的值是(  )
A.i+2B.i-2C.-2-iD.2-i

查看答案和解析>>

科目: 来源: 题型:填空题

18.二维空间中,正方形的一维测度(周长)l=4a(其中a为正方形的边长),二维测度(面积)S=a2;三维空间中,正方体的二维测度(表面积)S=6a2(其中a为正方形的边长),三维测度(体积)V=a3;应用合情推理,若四维空间中,“超立方”的三维测度V=4a3,则其四维测度W=$\frac{{a}^{4}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知二次函数f(x)的二次项系数为a,且不等式f(x)+2x>0的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知公差不为0的等差数列{an}满足a1=1,且a1、a2、a4为等比数列{bn}的前三项.
(1)求数列{an}、{bn}的通项公式;
(2)求数列{$\frac{{a}_{n}}{{b}_{n}{b}_{n+1}}$}的前n项和;
(3)数列{anbn}中是否有三项成等差数列,若有,请写出一组;若没有,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

15.令an=$\frac{1}{3}$+$\frac{1}{12}$+$\frac{1}{30}$+$\frac{1}{60}$+…+$\frac{1}{{nC}_{n-1}^{2}}$+$\frac{1}{(n+1{)C}_{n}^{2}}$,求an

查看答案和解析>>

科目: 来源: 题型:选择题

14.在平面几何里有射影定理:设三角形ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD•BC.拓展到空间,在四面体A-BCD中,CA⊥面ABD,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,得出正确的结论是(  )
A.S△ABC2=S△BOC•S△BDCB.S△ABD2=S△BOD•S△BDC
C.S△ADC2=S△DOC•S△BDCD.S△DBC2=S△ABD•S△ABC

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=alnx-ax-3(a∈R)
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t∈[1,2],函数g(x)=x3+x2[$\frac{m}{2}$+f′(x)]在区间(t,3)上总存在极值?

查看答案和解析>>

科目: 来源: 题型:解答题

12.福建师大附中高二年级将于4月中旬进行年级辩论赛,每个班将派出6名同学分别担任一辩、二辩、三辩、四辩、五辩和六辩.现某班已有3名男生和3名女生组成了辩论队,按下列要求,能分别安排出多少种不同的辩论顺序?(要求:先列式,再计算,最后用数字作答)
(1)三名男生和三名女生各自排在一起;
(2)男生甲不担任第一辩,女生乙不担任第六辩;
(3)男生甲必须排在第一辩或第六辩,3位女生中有且只有两位排在一起.

查看答案和解析>>

同步练习册答案