相关习题
 0  247682  247690  247696  247700  247706  247708  247712  247718  247720  247726  247732  247736  247738  247742  247748  247750  247756  247760  247762  247766  247768  247772  247774  247776  247777  247778  247780  247781  247782  247784  247786  247790  247792  247796  247798  247802  247808  247810  247816  247820  247822  247826  247832  247838  247840  247846  247850  247852  247858  247862  247868  247876  266669 

科目: 来源: 题型:解答题

12.已知$\overrightarrow a=(\frac{x^2}{3},x),\overrightarrow b=(x,x-3)$,x∈[-4,4],$f(x)=\overrightarrow a•\overrightarrow b$
(1)求f(x) 的解析式.
(2)求f(x)的最小值,并求此时$\overrightarrow a$与$\overrightarrow b$的夹角大小.

查看答案和解析>>

科目: 来源: 题型:填空题

11.下列命题:
①若$\overrightarrow a$与$\overrightarrow b$共线,则存在唯一的实数λ,使$\overrightarrow b$=λ$\overrightarrow a$;
②若向量$\overrightarrow a,\overrightarrow b$所在的直线为异面直线,则向量$\overrightarrow a,\overrightarrow b$一定不共面;
③向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$共面,则它们所在直线也共面;
④若A,B,C三点不共线,O是平面ABC外一点.若$\overrightarrow{OM}=\frac{1}{3}\overrightarrow{OA}+\frac{1}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$,则点M一定在平面ABC上,且在△ABC内部,
其中正确的命题有②④(写出所有正确命题的序号).

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0,m与n的关系表达式n=3m+6.

查看答案和解析>>

科目: 来源: 题型:选择题

9.假设乒乓球团体比赛的规则如下:进行5场比赛,除第3场为双打外,其余各场为单打,参赛的每个队选出3名运动员参加比赛,每个队员打两场,且第1、2场与第4、5场不能是某个运动员连续比赛.某队有5名乒乓球运动员,其中A不适合双打,则该队教练安排运动员参加比赛的方法共有(  )种.
A.48B.72C.96D.144

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知点集$U=\left\{{({x,y})\left|{\left\{\begin{array}{l}x=k\\ y={k^3}\end{array}\right.,k=-1,0,1,2,3}\right.}\right\}$,则由U中的任意三点可组成(  )个不同的三角形.
A.7B.8C.9D.10

查看答案和解析>>

科目: 来源: 题型:填空题

7.如图,在平行四边形ABCD中,已知AB=3,AD=4,$\overrightarrow{CP}$=2$\overrightarrow{PD}$,$\overrightarrow{AP}$•$\overrightarrow{BP}$=12,则$\overrightarrow{AB}$•$\overrightarrow{AD}$的值是6.

查看答案和解析>>

科目: 来源: 题型:选择题

6.公比为2的等比数列{an}的各项都是正数,且a3•a9=16,则log2a10=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目: 来源: 题型:解答题

5.计算:
(1)${∫}_{-4}^{3}$|x+2|dx;   
(2)${∫}_{0}^{1}$$\sqrt{4-{x}^{2}}$dx.

查看答案和解析>>

科目: 来源: 题型:填空题

4.两等差数列{an}和{bn},前n项和分别为Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+2}{n+3}$,则$\frac{{{a_2}+{a_{20}}}}{{{b_7}+{b_{15}}}}$等于$\frac{149}{24}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知角α终边上一点P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{2015π}{2}-α)tan(\frac{9π}{2}+α)}}$的值.

查看答案和解析>>

同步练习册答案