精英家教网 > 高中数学 > 题目详情
8.已知点集$U=\left\{{({x,y})\left|{\left\{\begin{array}{l}x=k\\ y={k^3}\end{array}\right.,k=-1,0,1,2,3}\right.}\right\}$,则由U中的任意三点可组成(  )个不同的三角形.
A.7B.8C.9D.10

分析 先求出点集U,在任选三点,当取(-1,1),(0,0),(1,1)时,三点在同一条直线上,不能构成三角形,故要排除,问题得以解决.

解答 解:点集$U=\left\{{({x,y})\left|{\left\{\begin{array}{l}x=k\\ y={k^3}\end{array}\right.,k=-1,0,1,2,3}\right.}\right\}$,得到{(-1,-1),(0,0),(1,1),(2,8),(3,27)},从中选选3点,有C53=10种,
当取(-1,1),(0,0),(1,1)时,三点在同一条直线上,不能构成三角形,故要排除,
故则由U中的任意三点可组成10-1=9个不同的三角形.
故选:C.

点评 本题考查了简单的组合问题,关键是要排除不能构成三角形的种数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列命题中,真命题是(  )
A.?x0∈R,e${\;}^{{x}_{0}}$≤0B.?x∈R,2x>x2
C.命题:若x≠y,则sinx≠siny逆否命题D.a>1,b>1是ab>1的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设M=$\frac{{{2^x}+{2^y}}}{2},N={2^{\frac{x+y}{2}}},P={2^{\sqrt{xy}}}$(其中0<x<y),则M,N,P的大小关系为(  )
A.M<N<PB.N<P<MC.P<M<ND.P<N<M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC中,内角A,B,C的对边分别为a,b,c,且cosA=$\frac{2\sqrt{5}}{5}$,cosB=$\frac{3\sqrt{10}}{10}$.
(Ⅰ)求cos(A+B)的值;
(Ⅱ)设a=$\sqrt{10}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知角α终边上一点P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{2015π}{2}-α)tan(\frac{9π}{2}+α)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\vec m$=($\sqrt{3}$sinx,2cosx),$\vec n$=(2cosx,-cosx),函数f(x)=$\overrightarrow{m}$.$\overrightarrow{n}$-1
(1)求函数f(x)的最小正周期和对称轴方程;
(2)设三角形ABC的角A,B,C的对边分别为a,b,c,且a=1,f(A)=0,求bc的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在[0,1]上任取一数a,在[1,2]上任取一数b,则点(a,b)满足a2+b2≤2的概率为$\frac{π-2}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.5人排成一排,甲只能排在第一个或第二两个位置,乙只能排在第二或第三两个位置,不同的排法共有(  )
A.12种B.16种C.18种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$上的各点横坐标缩短为原来的$\frac{1}{2}$,所得曲线的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).

查看答案和解析>>

同步练习册答案