精英家教网 > 高中数学 > 题目详情
19.设M=$\frac{{{2^x}+{2^y}}}{2},N={2^{\frac{x+y}{2}}},P={2^{\sqrt{xy}}}$(其中0<x<y),则M,N,P的大小关系为(  )
A.M<N<PB.N<P<MC.P<M<ND.P<N<M

分析 由基本不等式可得N>P且M>N,可得答案.

解答 解:由基本不等式可得$\frac{x+y}{2}$≥$\sqrt{xy}$,
∵0<x<y,∴$\frac{x+y}{2}$>$\sqrt{xy}$,
∴N>P,
再由基本不等式可得M=$\frac{{2}^{x}+{2}^{y}}{2}$>$\frac{2\sqrt{{2}^{x}•{2}^{y}}}{2}$
=$\sqrt{{2}^{x}•{2}^{y}}$=$\sqrt{{2}^{x+y}}$=${2}^{\frac{x+y}{2}}$=N,
∴P<N<M,
故选:D.

点评 本题考查基本不等式比较式子的大小,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如果点P(sin2θ,cos2θ)位于第三象限,那么角θ 所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第二或第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设P(x,y)是角α终边上任意一点(记r=$\sqrt{{x^2}+{y^2}}$>0),写出下列三角比:sinα=$\frac{y}{r}$cotα=$\frac{x}{y}$;secα=$\frac{r}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l的方程为2x+(1+m)y+2m=0,m∈R,点P的坐标为(-1,0).
(Ⅰ)求证:直线l恒过定点,并求出定点坐标;
(Ⅱ)设点P在直线l上的射影为点M,点N的坐标为(2,1),求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的公差d≠0,{an}中的部分项组成的数列ak1,ak2,…akn恰好成等比数列,其中k1=1,k2=5,k3=17,求:
(1)kn
(2)求数列{kn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l:x-y+m=0绕其与x轴的交点逆时针旋转90°后过点(2,-3)
(1)求m的值;
(2)求经过点A(1,1)和B(2,-2),且圆心在直线l上的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设f(n)>0(n∈N*),f(2)=4,并且对于任意的n1,n2∈N*,f(n1+n2)=f(n1)f(n2)成立,猜想f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点集$U=\left\{{({x,y})\left|{\left\{\begin{array}{l}x=k\\ y={k^3}\end{array}\right.,k=-1,0,1,2,3}\right.}\right\}$,则由U中的任意三点可组成(  )个不同的三角形.
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,且$\overrightarrow{b}$•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=1,则$\overrightarrow{a}$与$\overrightarrow{b}$夹角的余弦值是(  )
A.-$\frac{1}{3}$B.$\frac{\sqrt{2}}{3}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案