相关习题
 0  249769  249777  249783  249787  249793  249795  249799  249805  249807  249813  249819  249823  249825  249829  249835  249837  249843  249847  249849  249853  249855  249859  249861  249863  249864  249865  249867  249868  249869  249871  249873  249877  249879  249883  249885  249889  249895  249897  249903  249907  249909  249913  249919  249925  249927  249933  249937  249939  249945  249949  249955  249963  266669 

科目: 来源: 题型:解答题

11.已知点F1,F2为双曲线C:x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线于点M,且∠MF1F2=30°,圆O的方程为x2+y2=b2
(1)求双曲线C的方程;
(2)过圆O上任意一点Q(x0,y0)作切线l交双曲线C于A,B两个不同点,AB中点为N,求证|$\overrightarrow{AB}$|=2|$\overrightarrow{ON}$|.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=$\frac{-k+lnx}{x}$,k∈R.
(1)求f(x)的极值;
(2)若?x1∈(0,+∞),?x2∈[1,2]使lnx1>x1x22-ax1x2成立,求a的取值范围;
(3)已知x1>0,x2>0,且x1+x2<e,求证:(x1-x2)${\;}^{{x}_{1}{x}_{2}}$>(x1x2)${\;}^{{x}_{1}+{x}_{2}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.(重点中学做)甲乙两个人参加射击训练,射击一次中靶的概率分别是p1,p2,其中$\frac{1}{{p}_{1}}$,$\frac{1}{{p}_{2}}$是函数f(x)=$\frac{1}{3}$x3-$\frac{5}{2}$x2+mx(x∈R)的两极值点,函数g(x)=sinx-2x+2在区间[0,2π]上的最大值为$\frac{1}{{p}_{1}}$.
(1)求p1,p2的值;
(2)两人各射击1次,求两人中至少中靶1次的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,△ABC为等腰直角三角形,∠ACB=90°,PA⊥面ABC,AC=a,PA=$\sqrt{2}$a.
(1)求证:PC⊥BC;
(2)求二面角A-PB-C的余弦值的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图所示,在△ABC中,∠ACB=90°,CD⊥AB于点D,DE⊥BC于E,若AD=$\frac{3}{2}$$\sqrt{10}$,BE=2.求BC的长.

查看答案和解析>>

科目: 来源: 题型:解答题

6.对于任意的三个正数a,b,c,求证:a+b+c≥$\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ca}$,并指出等号成立的条件.

查看答案和解析>>

科目: 来源: 题型:填空题

5.在正四棱锥S-ABCD中,SA=2$\sqrt{3}$,当该棱锥的体积最大时,它的外接球(正四棱锥的顶点都在球的表面上)的体积为36π.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,已知正三棱柱ABC-A1B1C1中,AA1=4,AB=6,点D,E,F分别在棱BB1,CC1,AF上,且BD=C1E=$\frac{1}{2}$AF=1.
(1)求平面DEF与平面ABC所成锐二面角的大小;
(2)求点A1到平面DEF的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知△ABC的三边长是a,b,c,且m为正数,求证:$\frac{a}{a+m}$+$\frac{b}{b+m}$>$\frac{c}{c+m}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,PD⊥平面ABCD,AD⊥DC,AD∥BC,PD:DC:BC=1:1:$\sqrt{2}$.
(1)若AD=$\frac{1}{2}$BC,E为PC中点,求证:DE∥平面PAB;
(2)设PD=a,且二面角A-PB-C的大小为$\frac{π}{3}$,求AD的长.

查看答案和解析>>

同步练习册答案