精英家教网 > 高中数学 > 题目详情
5.在正四棱锥S-ABCD中,SA=2$\sqrt{3}$,当该棱锥的体积最大时,它的外接球(正四棱锥的顶点都在球的表面上)的体积为36π.

分析 设出底面边长,求出正四棱锥的高,写出体积表达式,利用求导求得最大值时,高的值,再求出外接球的半径,即可得出结论.

解答 解:设底面边长为a,则高h=$\sqrt{12-\frac{{a}^{2}}{2}}$,
所以体积V=$\frac{1}{3}$a2h=$\frac{1}{3}\sqrt{12{a}^{4}-\frac{1}{2}{a}^{6}}$,
设y=12a4-$\frac{1}{2}$a6,则y′=48a3-3a5,当y取最值时,y′=48a3-3a5=0,解得a=0或a=4时,
当a=4时,体积最大,此时h=2,
设外接球的半径为R,则R2=(2-R)2+(2$\sqrt{2}$)2
所以R=3,
所以外接球(正四棱锥的顶点都在球的表面上)的体积为$\frac{4}{3}π•{3}^{3}$=36π.
故答案为:36π.

点评 本试题主要考查锥体的体积,考查高次函数的最值问题的求法.是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知a,b为异面直线,求证:过a和b平行的平面α有且只有一个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若a≥b≥c>0,求证:aabbcc≥(abc)${\;}^{\frac{a+b+c}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知AC为⊙O的一条直径,∠ABC为圆周角,用向量法证明:∠ABC=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在如图所示的几何体中,底面ABCD是边长为2的菱形,∠ABC=60°,EA⊥平面ABCD,EA∥BF,EA=2BF=2,G为CE的中点,直线AC与BD相交于点O
(1)求证:FG⊥平面EAC;
(2)求二面角B-DE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{-k+lnx}{x}$,k∈R.
(1)求f(x)的极值;
(2)若?x1∈(0,+∞),?x2∈[1,2]使lnx1>x1x22-ax1x2成立,求a的取值范围;
(3)已知x1>0,x2>0,且x1+x2<e,求证:(x1-x2)${\;}^{{x}_{1}{x}_{2}}$>(x1x2)${\;}^{{x}_{1}+{x}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.根据下列条件,求双曲线的标准方程.
(1)与双曲线$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}$=1有共同的渐近线,一条准线为x=$\frac{18}{5}$;
(2)与双曲线$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{91}$=1有公共焦点,实轴长为18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合A={a2+2015|a∈N},B={b2+15|b∈N},则A∩B中的元素个数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,∠ABC=60°,AB=AD=2,PA=BC=4,M是PD的中点.
(1)求证:平面AMC⊥平面PAB;
(2)求二面角M-AB-C的余弦值.

查看答案和解析>>

同步练习册答案