相关习题
 0  250643  250651  250657  250661  250667  250669  250673  250679  250681  250687  250693  250697  250699  250703  250709  250711  250717  250721  250723  250727  250729  250733  250735  250737  250738  250739  250741  250742  250743  250745  250747  250751  250753  250757  250759  250763  250769  250771  250777  250781  250783  250787  250793  250799  250801  250807  250811  250813  250819  250823  250829  250837  266669 

科目: 来源: 题型:选择题

6.设α∈(0,$\frac{π}{4}$),则a=tan(sinα),b=tan(cosα)的大小关系是(  )
A.a<bB.b<a
C.a=bD.不能确定,由α具体求值决定

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,且g(n)=$\frac{1}{f(n)-1}$[f(1)+f(2)+…十f(n-1)].
(1)写出g(2),g(3),g(4)的值;
(2)归纳g(n)的值,并用数学归纳法加以证明.

查看答案和解析>>

科目: 来源: 题型:填空题

4.某个部件由3个型号相同的电子元件并联而成,3个电子元件中有一个正常工作,则改部件正常工作,已知这种电子元件的使用年限ξ(单位:年)服从正态分布,且使用年限少于3年的概率和多于9年的概率都是0.2.那么该部件能正常工作的时间超过9年的概率为0.488.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知函数f(x)=cos2x+2sinxcosx,则下列说法正确的是(  )
A.f(x)的图象关于直线$x=\frac{5}{8}π$对称
B.f(x)的图象关于点($-\frac{3}{8}π$,0)对称
C.若f(x1)=f(x2),则x1-x2=kπ,k∈Z
D.f(x)的图象向右平移$\frac{π}{4}$个单位长度后得$g(x)=\sqrt{2}sin(2x+\frac{π}{4})$

查看答案和解析>>

科目: 来源: 题型:选择题

2.下列说法中,不正确的是(  )
A.已知 a,b,m∈R,命题“若 am2<bm2,则a<b”为真命题
B.命题“$?{x_0}∈R,{x_0}^2-{x_0}>0$”的否定是:“?x∈R,x2-x≤0”
C.命题“p且q”为真命题,则命题p和q命题均为真命题
D.“x>3”是“x>2”的充分不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

1.设Sn是等差数列{an}的前n项和,若S8=S3+10,则S11=(  )
A.12B.18C.22D.44

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知定义在实数集R上的函数f(x)满足下列两个条件:
(1)f(0)=0,f(1)=1;(2)对任意的实数x,y,都有f($\frac{x+y}{2}$)=(1-a)f(x)+af(y),其中a是常数.
(Ⅰ)求a和f(-1)值;
(Ⅱ)(i)判定函数f(x)的奇偶性,并加以证明;
(ii)设S(n)=f(1)•f($\frac{1}{3}$)+f($\frac{1}{3}$)•f($\frac{1}{5}$)+…+f($\frac{1}{2n-1}$)•f($\frac{1}{2n+1}$)(n∈N*),若对于任意的正整数n,总有S(n)<m恒成立,试求实数m的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

19.下列说法正确的有①⑤.
①函数y=x2-2|x|+1的递减的区间是(-∞,-1]和[0,1];
②函数y=$\frac{3-5x}{4x+1}$的值域是(-∞,$\frac{3}{4}$)∪($\frac{3}{4}$,+∞);
③函数f(x)=$\frac{1}{{x}^{2}-3x+2}$+$\sqrt{x-1}$的定义域是{x|x≥1,且x≠2};
④若函数f(x)=$\frac{(x+1)(x+a)}{x}$为奇函数,则a=1;
⑤已知二次函数f(x)满足f(2+x)=f(2-x)(x∈R),且f(x)在(2,+∞)上是减函数,则f(-$\sqrt{2}$)<f(5)<f($\sqrt{3}$)

查看答案和解析>>

科目: 来源: 题型:解答题

18.长为1,宽为a($\frac{1}{2}$<a<1)的矩形纸片,剪下一个边长等于矩形宽度的正方形(称为第1次操作),剩下矩形长为原矩形的宽,如图,再剪下一个边长等于此时矩形宽度的正方形(称为第2次操作),剩下矩形长为第二个矩形的宽,如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作终止.
(1)当a=$\frac{3}{5}$时,求正整数n的最大值;
(2)记第一个矩形的长为a1=1,第二个矩形的长为a2=a,以此类推,第n个矩形的长为an,数列{an}的前n项和为Sn.若存在一个正数a($\frac{1}{2}$<a<1),使对于任意的正整数n(n≥3),都有an+1<an,求证2<Sn<3.

查看答案和解析>>

科目: 来源: 题型:填空题

17.设函数f(x)=|lg(x+1)|,实数a,b(a<b)满足f(a)=f(-$\frac{b+1}{b+2}$),f(10a+6b+21)=4lg2,则a+b的值为-$\frac{11}{15}$.

查看答案和解析>>

同步练习册答案