相关习题
 0  251256  251264  251270  251274  251280  251282  251286  251292  251294  251300  251306  251310  251312  251316  251322  251324  251330  251334  251336  251340  251342  251346  251348  251350  251351  251352  251354  251355  251356  251358  251360  251364  251366  251370  251372  251376  251382  251384  251390  251394  251396  251400  251406  251412  251414  251420  251424  251426  251432  251436  251442  251450  266669 

科目: 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,直线y=x+1经过椭圆C的左焦点.
(I)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C交于A,B两点,设P为椭圆上一点,且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=t$\overrightarrow{OP}$(其中O为坐标原点),求实数t的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.如所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,使点M,N分别在AB,AD的延长线上,且对角线MN过点C,已知AB=2米,AD=3米.
(Ⅰ)若要使矩形AMPN的面积不大于32平方米,则DN的长应在什么范围内?
(Ⅱ)当DN的长为多少时,矩形花坛AMPN的面积最小?并求出最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.设A(x0,y0)(x0,y0≠0)是椭圆T:$\frac{{x}^{2}}{m+1}$+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.
(Ⅰ) 若点A横坐标为$\frac{\sqrt{3}}{2}$,且BD∥AE,求m的值;
(Ⅱ)求证:直线BD与CE的交点Q总在椭圆$\frac{{x}^{2}}{m+1}$+y2=($\frac{m}{m+2}$)2上.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图AB是圆O的直径,AF⊥AB,弦CD交AB、AF分别于E、F,交圆于点C.
(1)证明:AF•DA=AC•DF
(2)若圆的半径为2,OE=EB=$\frac{1}{2}$AF,ED=$\frac{3}{2}$,求CF的长.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图所示,在四棱锥P-ABCD中,底面ABCD为正方形,侧棱PA⊥底面ABCD,PA=AD=1,E、F分别为PD、AC上的动点,且$\frac{DE}{DP}$=$\frac{CF}{CA}$=λ(0<λ<1).
(Ⅰ)当λ=$\frac{1}{2}$时,求证:AD⊥EF;
(Ⅱ)求三棱锥E-FAD的体积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知椭圆C:3x2+4y2=12和点Q(4,0),直线l过点Q且与椭圆C交于A、B两点(可以重合).
(Ⅰ)若∠AOB为钝角(O为原点),试确定直线l的斜率的取值范围;
(Ⅱ)设点A关于长轴的对称点为A1,F为椭圆的右焦点,试判断A1和F,B三点是否共线,并说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知椭圆C:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}$=1的右焦点为F2,右准线为l,左焦点为F1,点A∈l,线段AF2交椭圆C于点B,若$\overrightarrow{{F}_{2}A}$=4$\overrightarrow{{F}_{2}B}$,则|BF1|=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目: 来源: 题型:选择题

13.如图所示,△ABC内接于圆O,过点A的切线交BC的延长线于点P,D为AB的中点,DP交AC于点M,若BP=8,AM=4,AC=6,则PA=(  )
A.4$\sqrt{2}$B.3$\sqrt{2}$C.$\sqrt{2}$D.5$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),其中F1、F2为左右焦点,O为坐标原点,直线l与椭圆交于P(x1、y1),Q(x2,y2)两个不同点,当直线l过椭圆C右焦点F2且倾斜角为$\frac{π}{4}$时,原点O到直线l的距离为$\frac{\sqrt{2}}{2}$,又椭圆上的点到焦点F2的最近距离为$\sqrt{3}$-1
(1)求椭圆C的方程;
(2)以OP、OQ为邻边做平行四边形OQNP,当平行四边形OQNP面积为$\sqrt{6}$时,求平行四边形OQNP的对角线之积|ON|•|PQ|的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是⊙O的直径.
(1)求证:AC•BC=AD•AE;
(2)过点C作⊙O的切线交BA的延长线于点F,若AF=4,CF=6,求AC的长.

查看答案和解析>>

同步练习册答案