相关习题
 0  251486  251494  251500  251504  251510  251512  251516  251522  251524  251530  251536  251540  251542  251546  251552  251554  251560  251564  251566  251570  251572  251576  251578  251580  251581  251582  251584  251585  251586  251588  251590  251594  251596  251600  251602  251606  251612  251614  251620  251624  251626  251630  251636  251642  251644  251650  251654  251656  251662  251666  251672  251680  266669 

科目: 来源: 题型:选择题

19.已知函数f(x)=2x+log2x,g(x)=2xlog2x+1,h(x)=2xlog2x-1的零点分别为a,b,c,则 a,b,c的大小关系为(  )
A.a<b<cB.c<b<aC.c<a<bD.b<a<c

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,则不等式f(2x+3)≤5的解集为(  )
A.[-5,5]B.[-8,2]C.[-4,1]D.[1,4]

查看答案和解析>>

科目: 来源: 题型:选择题

17.当0<x≤$\frac{1}{2}$时,4x<logax,则实数a的取值范围是(  )
A.(1,2)B.(2,+∞)C.$(0,\frac{{\sqrt{2}}}{2})$D.$(\frac{{\sqrt{2}}}{2},1)$

查看答案和解析>>

科目: 来源: 题型:解答题

16.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数$f(x)={(\frac{1}{4})^x}+a•{(\frac{1}{2})^x}-1$,g(x)=$\frac{1-m•{2}^{x}}{1+m•{2}^{x}}$.
(Ⅰ)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(Ⅱ)当m=1时,判断函数g(x)的奇偶性并证明,并判断g(x)是否有上界,并说明理由;
(Ⅱ)若函数f(x)在[0,+∞)上是以2为上界的有界函数,求实数a的取值范围;
( IV)若m>0,函数g(x)在[0,1]上的上界是G,求G的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知集合$A=\{x|\frac{2x-3a-1}{x-2a-2}<1,a>-3\}$,集合B={x|2cos2x+1≥0}
(Ⅰ)当a=-2时,求A∩B;
(Ⅱ)若$A∩B=[-\frac{π}{3},\frac{π}{3}]$,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数$f(x+\frac{π}{4})=sin(2x+\frac{π}{4})$
(Ⅰ)求f(x)解析式及其对称中心;
(Ⅱ)若$a∈[-\frac{π}{4},\frac{7π}{24}]$,求f(a)的值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知在△ABC中,sinA+cosA=$\frac{{\sqrt{5}}}{5}$
(Ⅰ)求sinA-cosA的值;
(Ⅱ)求$\frac{{5{{sin}^2}A+sin(A-\frac{π}{2})cos(A+\frac{3π}{2})-5{{cos}^2}A}}{sinAcosA}$的值.

查看答案和解析>>

科目: 来源: 题型:填空题

12.若关于x的不等式x2-2ax-a2≤0的解集为A,且[0,1]⊆A,则a的取值范围是{a|$a≥\sqrt{2}-1或a≤-\sqrt{2}-1$}.

查看答案和解析>>

科目: 来源: 题型:填空题

11.若$|x|≤\frac{π}{3}$,则f(x)=cos2x+sinx的最大值是$\frac{5}{4}$.

查看答案和解析>>

科目: 来源: 题型:选择题

10.0<a<1,函数$f(x)={log_a}({a^{2x}}-{a^x}-1)$,则f(x)>0的x取值范围是(  )
A.(-∞,loga2)B.(loga2,+∞)C.(-∞,${log_a}\frac{{\sqrt{5}+1}}{2}$)D.(loga2,loga$\frac{{\sqrt{5}+1}}{2}$)

查看答案和解析>>

同步练习册答案