相关习题
 0  252353  252361  252367  252371  252377  252379  252383  252389  252391  252397  252403  252407  252409  252413  252419  252421  252427  252431  252433  252437  252439  252443  252445  252447  252448  252449  252451  252452  252453  252455  252457  252461  252463  252467  252469  252473  252479  252481  252487  252491  252493  252497  252503  252509  252511  252517  252521  252523  252529  252533  252539  252547  266669 

科目: 来源: 题型:解答题

13.若椭圆$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1>0,b1>0)和椭圆$\frac{{x}^{2}}{{{a}_{2}}^{2}}$+$\frac{{y}^{2}}{{{b}_{2}}^{2}}$=1(a2>0,b2>0)满足$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$,则称这两个椭圆相似.
(Ⅰ)求经过点M(2,3),且与椭圆E1:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1相似的椭圆E2的方程;
(Ⅱ)设点P(8,0),A,B是椭圆E2上关于x轴对称的任意两个不同的点,连结PB交椭圆E2于另一点C,证明:直线AC与x轴相交于定点,并求出此定点的坐标.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知x>0,y>0,若x+$\frac{1}{x}$+y+$\frac{9}{y}$=10,则x+y的最小值是2.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$,求:$\frac{|\overrightarrow{a}+\overrightarrow{b}|+|\overrightarrow{a}-2\overrightarrow{b}|}{|\overrightarrow{a}|}$的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.化简$\frac{sin(π+α)•cos(\frac{3π}{2}-α)•\frac{1}{tan(-α)}}{tan(α-π)•cos(α-2π)•sin(\frac{π}{2}+α)}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=sin(2ωx+$\frac{π}{6}$)+$\frac{3}{2}$,x∈R(ω>0),在y轴右侧的第一个最高点的横坐标为$\frac{π}{6}$.
(1)求ω;
(2)若将函数f(x)的图象向右平移$\frac{π}{6}$个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到导函数y=g(x)的图象,求函数g(x)的最大值及单调递减区间.

查看答案和解析>>

科目: 来源: 题型:解答题

8.设函数f(x)=2sinx$co{s}^{2}\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π)在x=π处取最小-1.
(1)求φ的值;若x∈[-$\frac{π}{4}$,$\frac{π}{4}$],求f(x)的单减区间;
(2)把f(x)的图象上所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再向左平移$\frac{π}{6}$个单位得的图象g(x),求g(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

7.若$lo{g}_{a}\frac{3}{4}$<0,则a的取值范围是a>1.

查看答案和解析>>

科目: 来源: 题型:解答题

6.比较下列各组数的大小.
(1)sin(cos$\frac{3π}{8}$),sin(sin$\frac{3π}{8}$);
(2)cos$\frac{3}{2}$,sin$\frac{1}{10}$,-cos$\frac{7}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.α,β是关于x的方程x2-2(cosθ+1)x+cos2θ=0的两个实根,且|α-β|≤2$\sqrt{2}$,求θ的范围.

查看答案和解析>>

科目: 来源: 题型:选择题

4.函数f(x)=$\sqrt{2}$sin2x-$\sqrt{6}$cos2x(  )
A.在(-$\frac{π}{3}$,$\frac{π}{12}$)上单调递减B.在(-$\frac{π}{3}$,$\frac{π}{12}$)上单调递增
C.在(-$\frac{π}{6}$,$\frac{π}{6}$)上单调递减D.在($\frac{π}{12}$,$\frac{π}{3}$)上单调递增

查看答案和解析>>

同步练习册答案