科目: 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度
(单位:千米时)是车流密度
(单位:辆千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当
时,车流速度
是车流密度
的一次函数.
(1)当
时,求函数
的表达式;
(2)当车流密度
为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时
)可以达到最大,并求出最大值.(精确到1辆/时)
查看答案和解析>>
科目: 来源: 题型:
【题目】电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方
图:
![]()
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(Ⅰ)根据已知条件完成下面的
列联表,并据此资料,在犯错误的概率不超过
的前提下,你是否有理由认为“体育迷”与性别有关?
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为
.若每次抽取的结果是相互独立的,求
的分布列,期望
和方差
.
附: ![]()
|
|
|
|
|
|
查看答案和解析>>
科目: 来源: 题型:
【题目】五一节期间,某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券.(假定指针等可能地停在任一位置, 指针落在区域的边界时,重新转一次)指针所在的区域及对应的返劵金额见右下表.
![]()
![]()
例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(1)已知顾客甲消费后获得
次转动转盘的机会,已知他每转一次转盘指针落在区域边界的概率为
,每次转动转盘的结果相互独立,设
为顾客甲转动转盘指针落在区域边界的次数,
的数学期望
,方差
.求
、
的值;
(2)顾客乙消费280元,并按规则参与了活动,他获得返券的金额记为
(元).求随机变量
的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆
:
.
(1)直线
过点
,且与圆
交于
两点,若
,求直线
的方程;
(2)过圆
上一动点
作平行于
轴的直线
,设
与
轴的交点为
,若向量
,求动点
的轨迹方程,并说明此轨迹是什么曲线.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
:
(
)的左、右焦点分别为
,离心率为
,以原点为圆心,以椭圆
的短半轴长为半径的圆与直线
相切. 过点
的直线与椭圆
相交于
两点.
(1)求椭圆
的方程;
(2)若
,求直线的方程;
(3)求
面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知
(x≥0)成等差数列.又数列{an}(an>0)中,a1=3 ,此数列的前n项的和Sn(n∈N*)对所有大于1的正整数n都有Sn=f(Sn-1).
(1)求数列{an}的第n+1项;
(2)若
是
,
的等比中项,且Tn为{bn}的前n项和,求Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com