相关习题
 0  256054  256062  256068  256072  256078  256080  256084  256090  256092  256098  256104  256108  256110  256114  256120  256122  256128  256132  256134  256138  256140  256144  256146  256148  256149  256150  256152  256153  256154  256156  256158  256162  256164  256168  256170  256174  256180  256182  256188  256192  256194  256198  256204  256210  256212  256218  256222  256224  256230  256234  256240  256248  266669 

科目: 来源: 题型:

【题目】已知平面α⊥平面βαβn,直线lα,直线mβ,则下列说法正确的个数是(  )

①若lnlm,则lβ;②若ln,则lβ;③若mnlm,则mα.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx=xln x

1求函数fx的极值点;

2设函数gx=fx-ax-1,其中a∈R,求函数gx在区间[1,e]上的最小值.(其中e为自然对数的底数).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx=ax3+bx2+cx在x=±1处取得极值,在x=0处的切线与直线3x+y=0平行

1求fx的解析式;

2已知点A2,m,求过点A的曲线y=fx的切线条数

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,两点的坐标分别为,动点满足:直线与直线的斜率之积为.

(1)求动点的轨迹方程;

(2)过点作两条互相垂直的射线,与(1)的轨迹分别交于两点,求面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图几何体中,矩形所在平面与梯形所在平面垂直,且 的中点.

(1)证明: 平面

(2)证明: 平面.

查看答案和解析>>

科目: 来源: 题型:

【题目】某小型餐馆一天中要购买两种蔬菜,蔬菜每公斤的单价分别为2元和3元.根据需要蔬菜至少要买6公斤蔬菜至少要买4公斤,而且一天中购买这两种蔬菜的总费用不能超过60元.如果这两种蔬菜加工后全部卖出,两种蔬菜加工后每公斤的利润分别为2元和1元,餐馆如何采购这两种蔬菜使得利润最大,利润最大为多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】围建一个面积为的矩形场地,要求矩形场地的一面利用旧墙利用旧墙需维修,其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2的进出口,如图所示,已知旧墙的维修费用为元/,新墙的造价为元/,设利用的旧墙的长度为,费用为元.

1表示为的函数;

2试确定的值,使得修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数满足以下两个条件:

不等式的解集是函数上的最小值是3.

1的解析式;

2若点在函数的图象上,且

i求证:数列为等比数列;

ii,是否存在正整数,使得取到最小值?若有,请求出的值;若无,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】.

(1)令,求的单调区间;

(2)已知处取得极大值.求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某小型餐馆一天中要购买两种蔬菜,蔬菜每公斤的单价分别为2元和3元.根据需要蔬菜至少要买6公斤蔬菜至少要买4公斤,而且一天中购买这两种蔬菜的总费用不能超过60元.如果这两种蔬菜加工后全部卖出,两种蔬菜加工后每公斤的利润分别为2元和1元,餐馆如何采购这两种蔬菜使得利润最大,利润最大为多少元?

查看答案和解析>>

同步练习册答案