相关习题
 0  256575  256583  256589  256593  256599  256601  256605  256611  256613  256619  256625  256629  256631  256635  256641  256643  256649  256653  256655  256659  256661  256665  256667  256669  256670  256671  256673  256674  256675  256677  256679  256683  256685  256689  256691  256695  256701  256703  256709  256713  256715  256719  256725  256731  256733  256739  256743  256745  256751  256755  256761  256769  266669 

科目: 来源: 题型:

【题目】

等腰梯形ABEF中,ABEFAB=2,ADAF=1,AFBFOAB的中点,矩形ABCD 所在的平面和平面ABEF互相垂直.

(1)求证:AF⊥平面CBF

(2)设FC的中点为M,求证:OM∥平面DAF

(3)求三棱锥CBEF的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】将一块圆心角为120°,半径为20cm的扇形钢片裁出一块矩形钢片,如图有两种裁法:使矩形一边在扇形的一条半径OA上,或者让矩形一边与弦AB平行,试问哪种裁法能使截得的矩形钢片面积最大?并求出这个最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】知右焦点椭圆且椭圆于直线对称的图形过坐标原点.

1)求椭圆方程;

(2)过不垂直于的直线椭圆两点,点的对称点为证明直线的交点为.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知向量 .设 (t为实数).

(Ⅰ)若,求当取最小值时实数t的值;

(Ⅱ)若,问:是否存在实数t,使得向量和向量的夹角为,若存在,请求出t;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验.为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.

分数

甲班频数

5

6

4

4

1

一般频数

1

3

6

5

5

(1)由以下统计数据填写下面列联表,并判断能否在犯错误的额概率不超过0.025的前提下认为“成绩优良与教学方式有关”?

甲班

乙班

总计

成绩优良

成绩不优良

总计

附:,其中.

临界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】知函数.

(1)若函数区间单调,求取值范围;

(2)若函数无零点,求最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】小明和爸爸周末到湿地公园进行锻炼,两人上午9:00从公园入口出发,沿相同路线匀速运动,小明15分钟后到达目的地,此时爸爸离出发地的路程为1200米,小明到达目的地后立即按原路匀速返回,与爸爸相遇后,和爸爸一起从原路返回出发地.小明、爸爸在锻炼过程中离出发地的路程与小明出发的时间的函数关系如图.

(1)图中________ _______

(2)求小明和爸爸相遇的时刻.

查看答案和解析>>

科目: 来源: 题型:

【题目】为参加学校的“我爱古诗词”知识竞赛,小王所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.

请根据以上频率分布表和频率分布直方图,回答下列问题:

(1)求出的值;

(2)老师说:“小王的测试成绩是全班同学成绩的中位数”,那么小王的测试成绩在什么范围内?

(3)若要从小明、小敏等五位成绩优秀的同学中随机选取两位参加竞赛,请用:列表法或树状图求出小明、小敏同时被选中的概率.(注:五位同学请用表示,其中小明为,小敏为

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四边形中, 的中点,连接,过点于点,连接,已知.

(1)求证:

(2)若,求的长度;

(3)求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知极点与直角坐标系的原点重合,极轴与轴的正半轴重合,圆的极坐标方程是,直线的参数方程是为参数).

1)若为直线轴的交点, 是圆上一动点,求的最大值;

2)若直线被圆截得的弦长为,求的值.

查看答案和解析>>

同步练习册答案