相关习题
 0  257500  257508  257514  257518  257524  257526  257530  257536  257538  257544  257550  257554  257556  257560  257566  257568  257574  257578  257580  257584  257586  257590  257592  257594  257595  257596  257598  257599  257600  257602  257604  257608  257610  257614  257616  257620  257626  257628  257634  257638  257640  257644  257650  257656  257658  257664  257668  257670  257676  257680  257686  257694  266669 

科目: 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,左、右顶点分别为为直径的圆O过椭圆E的上顶点D,直线DB与圆O相交得到的弦长为.设点,连接PA交椭圆于点C,坐标原点为O.

(I)求椭圆E的方程;

(II)若三角形ABC的面积不大于四边形OBPC的面积,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某省高考改革新方案,不分文理科,高考成绩实行“”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体,从学生群体中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;

(II)从所调查的50名学生中任选2名,记表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量的分布列和数学期望;

(III)将频率视为概率,现从学生群体中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作,求事件“”的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】己知函数 (其中e为自然对数的底数),

(I)求函数的单调区间;

(II)设,.已知直线是曲线的切线,且函数上是增函数.

(i)求实数的值;

(ii)求实数c的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在边长为2的正方体ABCD﹣A1B1C1D1中,E是BC的中点,F是DD1的中点,
(1)求点A到平面A1DE的距离;
(2)求证:CF∥平面A1DE;
(3)求二面角E﹣A1D﹣A的平面角大小的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】要得到函数y=sin2x的图象,可由函数
A.向左平移 个长度单位
B.向右平移 个长度单位
C.向左平移 个长度单位
D.向右平移 个长度单位

查看答案和解析>>

科目: 来源: 题型:

【题目】为了分析某篮球运动员在比赛中发挥的稳定程度,统计了运动员在8场比赛中的得分,用茎叶图表示如图,则该组数据的标准差为( )

A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农

民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如

图2的不完整的条形统计图.

图1 图2

根据以上统计图来判断以下说法错误的是

A. 2013年农民工人均月收入的增长率是

B. 2011年农民工人均月收入是

C. 小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了”

D. 2009年到2013年这五年中2013年农民工人均月收入最高

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,设椭圆)的左、右焦点分别为,点在椭圆上, 的面积为.

(Ⅰ)求该椭圆的标准方程;

(Ⅱ)是否存在圆心在轴上的圆,使圆在轴的上方与椭圆

有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】雾霾天气对城市环境造成很大影响,按照国家环保部发布的标准:居民区的PM2.5(大气中直径小于或等于2.5微米的颗粒物)年平均浓度不得超过35微克/立方米.某市环保部门加强了对空气质量的监测,抽取某居民区监测点的20天PM2.5的24小时平均浓度的监测数据,制成茎叶图,如图:

(Ⅰ)完成如下频率分布表,并在所给的坐标系中画出的频率分布直方图;

(Ⅱ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】平面直角坐标系中,曲线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)求曲线的普通方程和直线的倾斜角;

(2)设点,直线和曲线交于 两点,求.

查看答案和解析>>

同步练习册答案