科目: 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,左、右顶点分别为
为直径的圆O过椭圆E的上顶点D,直线DB与圆O相交得到的弦长为
.设点
,连接PA交椭圆于点C,坐标原点为O.
![]()
(I)求椭圆E的方程;
(II)若三角形ABC的面积不大于四边形OBPC的面积,求
的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某省高考改革新方案,不分文理科,高考成绩实行“
”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体
,从学生群体
中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:
![]()
(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记
表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量
的分布列和数学期望;
(III)将频率视为概率,现从学生群体
中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作
,求事件“
”的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】己知函数
(其中e为自然对数的底数),
.
(I)求函数
的单调区间;
(II)设
,.已知直线
是曲线
的切线,且函数
上是增函数.
(i)求实数
的值;
(ii)求实数c的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在边长为2的正方体ABCD﹣A1B1C1D1中,E是BC的中点,F是DD1的中点,
(1)求点A到平面A1DE的距离;
(2)求证:CF∥平面A1DE;
(3)求二面角E﹣A1D﹣A的平面角大小的余弦值.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农
民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如
图2的不完整的条形统计图.
![]()
图1 图2
根据以上统计图来判断以下说法错误的是
A. 2013年农民工人均月收入的增长率是![]()
B. 2011年农民工人均月收入是
元
C. 小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了”
D. 2009年到2013年这五年中2013年农民工人均月收入最高
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,设椭圆
(
)的左、右焦点分别为
,点
在椭圆上,
,
,
的面积为
.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)是否存在圆心在
轴上的圆,使圆在
轴的上方与椭圆
有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】雾霾天气对城市环境造成很大影响,按照国家环保部发布的标准:居民区的PM2.5(大气中直径小于或等于2.5微米的颗粒物)年平均浓度不得超过35微克/立方米.某市环保部门加强了对空气质量的监测,抽取某居民区监测点的20天PM2.5的24小时平均浓度的监测数据,制成茎叶图,如图:
![]()
(Ⅰ)完成如下频率分布表,并在所给的坐标系中画出
的频率分布直方图;
![]()
(Ⅱ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】平面直角坐标系
中,曲线
的参数方程为
为参数),在以原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的倾斜角;
(2)设点
,直线
和曲线
交于
,
两点,求
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com