相关习题
 0  257742  257750  257756  257760  257766  257768  257772  257778  257780  257786  257792  257796  257798  257802  257808  257810  257816  257820  257822  257826  257828  257832  257834  257836  257837  257838  257840  257841  257842  257844  257846  257850  257852  257856  257858  257862  257868  257870  257876  257880  257882  257886  257892  257898  257900  257906  257910  257912  257918  257922  257928  257936  266669 

科目: 来源: 题型:

【题目】已知圆的方程为(x﹣1)2+(y﹣1)2=1,P点坐标为(2,3), 求:
(1)过P点的圆的切线长.
(2)过P点的圆的切线方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证: (Ⅰ)PA∥平面BDE;
(Ⅱ)平面PAC⊥平面BDE.

查看答案和解析>>

科目: 来源: 题型:

【题目】某蛋糕店出售一种蛋糕,这种蛋糕的保质期很短,必须当天卖掉,否则容易变质,该蛋糕店每天以每块16元的成本价格制作这种蛋糕若干块,然后以每块26元的价格出售,如果当天卖不完,剩下的蛋糕只能以每块6元低价出售.蛋糕店记录了100天该种蛋糕的日需求量n(单位:块,n∈N*)整理得如图:
(1)若该蛋糕店某一天制作19块蛋糕,求当天的利润y(单位:元)关于当天需求量n的函数解析式;
(2)若要求出售“出售的蛋糕块数不小于n”的频率不小于0.4,求n的最大值.
(3)若该蛋糕店这100天每天都制作19块蛋糕,试计算这100天蛋糕店所获利润的平均数.

查看答案和解析>>

科目: 来源: 题型:

【题目】假设小明家订了一份报纸,送报人可能在早上6:30﹣7:30之间把报纸送到小明家,小明父亲离开家去工作的时间在早上7:00﹣8:00之间,问小明父亲在离开家前能得到报纸(称为事件A)的概率是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】抽样调查某大型机器设备使用年限x和该年支出维修费用y(万元),得到数据如表

使用年限x

2

3

4

5

6

维修费用y

2.2

3.8

5.5

6.5

7.0

部分数据分析如下 =25, yi=112.3, =90
参考公式:线性回归直线方程为
(1)求线性回归方程;
(2)由(1)中结论预测第10年所支出的维修费用.

查看答案和解析>>

科目: 来源: 题型:

【题目】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为(
A.
B.
C.
D.1

查看答案和解析>>

科目: 来源: 题型:

【题目】执行如图所示的程序框图输出的结果为(

A.(﹣2,2)
B.(﹣4,0)
C.(﹣4,﹣4)
D.(0,﹣8)

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 的离心率为,且过点 是椭圆上异于长轴端点的两点.

(1)求椭圆的方程;

(2)已知直线 ,且,垂足为 ,垂足为,若,且的面积是面积的5倍,求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ=2.
(1)若点M的直角坐标为(2, ),直线l与曲线C1交于A、B两点,求|MA|+|MB|的值.
(2)设曲线C1经过伸缩变换 得到曲线C2 , 求曲线C2的内接矩形周长的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,已知曲线C1的参数方程为 (φ为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4 cosθ.
(1)求C1与C2交点的直角坐标;
(2)已知曲线C3的参数方程为 (0≤α<π,t为参数,且t≠0),C3与C1相交于点P,C2与C3相交于点Q,且|PQ|=8,求α的值.

查看答案和解析>>

同步练习册答案