科目: 来源: 题型:
【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在
市的普及情况,
市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)
![]()
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为
市使用网络外卖的情况与性别有关?
(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;
②将频率视为概率,从
市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为
,求
的数学期望和方差.
参考公式:
,其中
.
参考数据:
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知曲线
的参数方程为
(
,
为参数).以坐标原点
为极点,
轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程为
.
(Ⅰ)当
时,求曲线
上的点到直线
的距离的最大值;
(Ⅱ)若曲线
上的所有点都在直线
的下方,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
,则f(x)是( )
A.周期为π,图象关于点
对称的函数
B.最大值为2,图象关于点
对称的函数
C.周期为2π,图象关于点
对称的函数
D.最大值为2,图象关于直线
对称的函数
查看答案和解析>>
科目: 来源: 题型:
【题目】已知a>0,b∈R,函数f(x)=4ax2﹣2bx﹣a+b,x∈[0,1].
(1)当a=b=2时,求函数f(x)的最大值;
(2)证明:函数f(x)的最大值|2a﹣b|+a;
(3)证明:f(x)+|2a﹣b|+a≥0.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足
=λ
. ![]()
(1)若λ=
,用向量
,
表示
;
(2)若|
|=4,|
|=3,且∠AOB=60°,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=x2+4[sin(θ+
)]x﹣2,θ∈[0,2π]].
(1)若函数f(x)为偶函数,求tanθ的值;
(2)若f(x)在[﹣
,1]上是单调函数,求θ的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1 , F2在x轴上,离心率e=
. ![]()
(1)求椭圆E的方程;
(2)求∠F1AF2的角平分线所在直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=cos(ωx+φ)(ω>0,﹣π<φ<0)的最小正周期为π,且它的图象过点(
,
).
(1)求ω,φ的值;
(2)求函数y=f(x)的单调增区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com