相关习题
 0  258266  258274  258280  258284  258290  258292  258296  258302  258304  258310  258316  258320  258322  258326  258332  258334  258340  258344  258346  258350  258352  258356  258358  258360  258361  258362  258364  258365  258366  258368  258370  258374  258376  258380  258382  258386  258392  258394  258400  258404  258406  258410  258416  258422  258424  258430  258434  258436  258442  258446  258452  258460  266669 

科目: 来源: 题型:

【题目】某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:

时间

第4天

第32天

第60天

第90天

价格(千元)

23

30

22

7

(Ⅰ)写出价格f(x)关于时间x的函数关系式(x表示投放市场的第x天,x∈N*);
(Ⅱ)销售量g(x)与时间x的函数关系式为 ,则该产品投放市场第几天的销售额最高?最高为多少千元?

查看答案和解析>>

科目: 来源: 题型:

【题目】在无重复数字的五位数a1a2a3a4a5中,若a1<a2 , a2>a3 , a3<a4 , a4>a5时称为波形数,如89674就是一个波形数,由1,2,3,4,5组成一个没有重复数字的五位数是波形数的概率是

查看答案和解析>>

科目: 来源: 题型:

【题目】已知向量 =({cosx,﹣ cosx), =(cosx,sinx),函数f(x)= +1. (Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若f(θ)= 的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等差数列{an}的前n项和Sn , 且a3=7,S11=143, (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2 +2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近于圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精确到小数点后两位)的值为( )(参考数据:sin15°=0.2588,sin75°=0.1305)
A.3.10
B.3.11
C.3.12
D.3.13

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数f(x)=ax﹣lnx(a∈R).
(1)当a=1时,求f(x)的最小值;
(2)若存在x∈[1,3],使 +lnx=2成立,求a的取值范围;
(3)若对任意的x∈[1,+∞),有f(x)≥f( )成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的离心率为 ,两个顶点分别为A(﹣a,0),B(a,0),点M(﹣1,0),且3 = ,过点M斜率为k(k≠0)的直线交椭圆E于C,D两点,其中点C在x轴上方.
(1)求椭圆E的方程;
(2)若BC⊥CD,求k的值;
(3)记直线AD,BC的斜率分别为k1 , k2 , 求证: 为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某休闲广场中央有一个半径为1(百米)的圆形花坛,现计划在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形(梯形ABCF和梯形DEFC)构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径(如图).设∠AOF=θ,其中O为圆心.
(1)把六边形ABCDEF的面积表示成关于θ的函数f(θ);
(2)当θ为何值时,可使得六边形区域面积达到最大?并求最大面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若acosA=bsinb,且 ,则sinA+sinC的最大值是

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).
(1)求圆M的方程;
(2)过坐标原点O的直线l被圆M截得的弦长为 ,求直线l的方程.

查看答案和解析>>

同步练习册答案