科目: 来源: 题型:
【题目】某种新产品投放市场的100天中,前40天价格呈直线上升,而后60天其价格呈直线下降,现统计出其中4天的价格如下表:
时间 | 第4天 | 第32天 | 第60天 | 第90天 |
价格(千元) | 23 | 30 | 22 | 7 |
(Ⅰ)写出价格f(x)关于时间x的函数关系式(x表示投放市场的第x天,x∈N*);
(Ⅱ)销售量g(x)与时间x的函数关系式为
,则该产品投放市场第几天的销售额最高?最高为多少千元?
查看答案和解析>>
科目: 来源: 题型:
【题目】在无重复数字的五位数a1a2a3a4a5中,若a1<a2 , a2>a3 , a3<a4 , a4>a5时称为波形数,如89674就是一个波形数,由1,2,3,4,5组成一个没有重复数字的五位数是波形数的概率是 .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知向量
=({cosx,﹣
cosx),
=(cosx,sinx),函数f(x)=
+1. (Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若f(θ)=
,
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知等差数列{an}的前n项和Sn , 且a3=7,S11=143, (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2
+2n,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目: 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近于圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精确到小数点后两位)的值为( )(参考数据:sin15°=0.2588,sin75°=0.1305) ![]()
A.3.10
B.3.11
C.3.12
D.3.13
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=ax﹣lnx(a∈R).
(1)当a=1时,求f(x)的最小值;
(2)若存在x∈[1,3],使
+lnx=2成立,求a的取值范围;
(3)若对任意的x∈[1,+∞),有f(x)≥f(
)成立,求a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,椭圆E:
=1(a>b>0)的离心率为
,两个顶点分别为A(﹣a,0),B(a,0),点M(﹣1,0),且3
=
,过点M斜率为k(k≠0)的直线交椭圆E于C,D两点,其中点C在x轴上方. ![]()
(1)求椭圆E的方程;
(2)若BC⊥CD,求k的值;
(3)记直线AD,BC的斜率分别为k1 , k2 , 求证:
为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某休闲广场中央有一个半径为1(百米)的圆形花坛,现计划在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形(梯形ABCF和梯形DEFC)构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径(如图).设∠AOF=θ,其中O为圆心. ![]()
(1)把六边形ABCDEF的面积表示成关于θ的函数f(θ);
(2)当θ为何值时,可使得六边形区域面积达到最大?并求最大面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).
(1)求圆M的方程;
(2)过坐标原点O的直线l被圆M截得的弦长为
,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com