科目: 来源: 题型:
【题目】下列命题中正确的个数是( )
①过异面直线a,b外一点P有且只有一个平面与a,b都平行;
②异面直线a,b在平面α内的射影相互垂直,则a⊥b;
③底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
④直线a,b分别在平面α,β内,且a⊥b,则α⊥β.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目: 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的动点.若CE∥平面PAB,则三棱锥C﹣ABE的体积为( )
A.
B.
C.
D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线E:x2=2py(p>0),直线y=kx+2与E交于A、B两点,且 =2,其中O为原点.
(1)求抛物线E的方程;
(2)点C坐标为(0,﹣2),记直线CA、CB的斜率分别为k1 , k2 , 证明:k12+k22﹣2k2为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知一个椭圆的中心在原点,左焦点为 ,且过D(2,0).
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,点A(1,0),求线段PA中点M的轨迹方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)= .
(1)求a,b的值;
(2)不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;
(3)方程f(|2x﹣1|)+k( ﹣3)有三个不同的实数解,求实数k的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,A,B,C三点满足 = + . (Ⅰ)求证:A,B,C三点共线;
(Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0, ],f(x)= ﹣(2m2+ )| |的最小值为 ,求实数m的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求数学成绩在[50,90)之外的人数.
分数段 | [50,60) | [60,70) | [70,80) | [80,90) |
x:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com