科目: 来源: 题型:
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|< 在某一个周期的图象时,列表并填入了部分数据,如表:
ωx+φ | 0 | π | 2π | ||
x | x1 | x2 | x3 | ||
Asin(ωx+φ)+B | 0 | 0 | ﹣ | 0 |
(1)请求出上表中的x1 , x2 , x3 , 并直接写出函数f(x)的解析式;
(2)若3sin2 ﹣ mf( ﹣ )≥m+2对任意x∈[0,2π]恒成立,求实数m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】设a∈R,函数f(x)=cosx(asinx﹣cosx)+cos2( ﹣x)满足f(﹣ )=f(0).
(1)求f(x)的单调递减区间;
(2)设锐角△ABC的内角A,B,C所对的边分别为a,b,c,且 = ,求f(A)的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP= .
(Ⅰ)求证:AB⊥PC;
(Ⅱ)求点D到平面PAC的距离.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}满足an+1=λan+2n(n∈N* , λ∈R),且a1=2.
(1)若λ=1,求数列{an}的通项公式;
(2)若λ=2,证明数列{ }是等差数列,并求数列{an}的前n项和Sn .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在正三棱柱ABC﹣A1B1C1中,点D在边BC上,AD⊥C1D.
(1)求证:平面ADC1⊥平面BCC1B1;
(2)如果点E是B1C1的中点,求证:AE∥平面ADC1 .
查看答案和解析>>
科目: 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面积为 ,求△ABC的周长.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知: 、 、 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐标.
(2)若| |= ,且 +2 与2 ﹣ 垂直,求 与 的夹角θ
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com