科目: 来源: 题型:
【题目】已知结论:“在三边长都相等的△ABC中,若D是BC的中点,G是△ABC外接圆的圆心,则
”.若把该结论推广到空间,则有结论:“在六条棱长都相等的四面体ABCD中,若M是△BCD的三边中线的交点,O为四面体ABCD外接球的球心,则
= .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1 , a14=b4 .
(1)求{an}的通项公式;
(2)设cn=an+bn , 求数列{cn}的前n项和.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定义在R上函数f(x)是可导的,f(1)=2,且f(x)+f'(x)<1,则不等式f(x)﹣1<e1﹣x的解集是( )(注:e为自然对数的底数)
A.(1,+∞)
B.(﹣∞,0)∪(0,1)
C.(0,1)
D.(﹣∞,1)
查看答案和解析>>
科目: 来源: 题型:
【题目】《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”: 2
=
,3
=
,4
=
,5
=
则按照以上规律,若8
=
具有“穿墙术”,则n=( )
A.7
B.35
C.48
D.63
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且n+1=1+Sn对一切正整数n恒成立.
(1)试求当a1为何值时,数列{an}是等比数列,并求出它的通项公式;
(2)在(1)的条件下,当n为何值时,数列
的前n项和Tn取得最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且Sn=2an﹣3n(n∈N+).
(1)求a1 , a2 , a3的值;
(2)是否存在常数λ,使得{an+λ}为等比数列?若存在,求出λ的值和通项公式an , 若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,a,b,c分别为A、B、C的对边,且满足2(a2﹣b2)=2accosB+bc
(1)求A
(2)D为边BC上一点,CD=3BD,∠DAC=90°,求tanB.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义
为n个正数p1 , p2 , …,pn的“均倒数”.若已知正数数列{an}的前n项的“均倒数”为
,又bn=
,则
+
+
+…+
=( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com