科目: 来源: 题型:
【题目】如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=
.
![]()
(1)证明:平面PBE⊥平面PAB;
(2)求二面角A-BE-P的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】( 本小题满分14)
如图,在三棱锥P—ABC中,PC⊥底面ABC,AB⊥BC,D,E分别是AB,PB的中点.
![]()
(1)求证:DE∥平面PAC
(2)求证:AB⊥PB
查看答案和解析>>
科目: 来源: 题型:
【题目】经市场调查,某商品在过去的100天内的销售量(单位:件)和价格(单位:元)均为时间
(单位:天)的函数,且销售量满足
=
,价格满足
=
.
(1)求该种商品的日销售额
与时间
的函数关系;
(2)若销售额超过16610元,商家认为该商品的收益达到理想程度,请判断该商品在哪几天的收益达到理想程度?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是四棱锥的平面展开图,其中四边形ABCD为正方形,E,F,G,H分别为PA,PD,PC,PB的中点,在此几何体中,给出下面四个结论中错误的是( )
![]()
A. 平面
平面ABCD
B. 直线BE,CF相交于一点
C. EF//平面BGD
D.
平面BGD
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数
(
,且
).
(1)当
时,设集合
,求集合
;
(2)在(1)的条件下,若
,且满足
,求实数
的取值范围;
(3)若对任意的
,存在
,使不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在(1+x+x2)n=
x
x2+…
xr+…
x2n﹣1
x2n的展开式中,把D
,D
,D
…,D
…,D
叫做三项式系数
(1)求D
的值
(2)根据二项式定理,将等式(1+x)2n=(1+x)n(x+1)n的两边分别展开可得,左右两边xn的系数相等,即C
=(C
)2+(C
)2+(C
)2+…+(C
)2 , 利用上述思想方法,请计算D
C
﹣D
C
+D
C
﹣…+(﹣1)rD
C
+..
C
C
的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在校运动会上,甲、乙、丙三位同学每人均从跳远,跳高,铅球,标枪四个项目中随机选一项参加比赛,假设三人选项目时互不影响,且每人选每一个项目时都是等可能的
(1)求仅有两人所选项目相同的概率;
(2)设X为甲、乙、丙三位同学中选跳远项目的人数,求X的分布列和数学期望E(X)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=lnx﹣
(a>0)
(1)若函数f(x)在x=2处的切线与x轴平行,求实数a的值;
(2)讨论函数f(x)在区间[1,2]上的单调性;
(3)证明:
>e.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com