【题目】已知函数f(x)=lnx﹣
(a>0)
(1)若函数f(x)在x=2处的切线与x轴平行,求实数a的值;
(2)讨论函数f(x)在区间[1,2]上的单调性;
(3)证明:
>e.
【答案】
(1)解:∵
,(x>0)
∵函数f(x)在x=2处的切线与x轴平行
∴f′(2)=
,解得a= ![]()
(2)解:∵
=
,(x>0,a>0)
令h(x)=ax2+(2a﹣2)x+a,(a>0),△=4﹣8a
①)当△=4﹣8a≤0,即a
时,f′(x)≥0在(0,+∞)恒成立,此时函数f(x)在区间[1,2]上单调递增;
②当△=4﹣8a>0,即0<a
时,抛物线y=ax2+(2a﹣2)x+a的图象如下,与横轴交点横坐标为x1=
,x2= ![]()
h(1)=4a﹣2<0,h(2)=9a﹣4
当h(2)=9a﹣4≤0,即0
时,h(x)≤0在(1,2)上恒成立,∴f′(x)≤0在(1,2)上恒成立,此时函数f(x)在区间[1,2]上单调递减
当h(2)=9a﹣4<0,即
时,h(x)≤0在(1,x2)上恒成立,h(x)≥0在(x2,2)上恒成立,此时函数f(x)在区间[1,
]上单调递减
,在(
,2)上单调递增
(3)证明:由(2)可知,当a=0.5时,函数f(x)在区间[1,2]上单调递增;即lnx
在区间[1,2]上恒成立.
令x=1+
,(n∈N+),则有ln(1+
)> ![]()
(n+0.5)ln
>1ln(
)n+0.5>1
,
令n=2017,可得
>e
【解析】(1)
,(x>0)由f′(2)=
,解得a(2)
=
,(x>0,a>0),令h(x)=ax2+(2a﹣2)x+a,(a>0),△=4﹣8a,分①)当△=4﹣8a≤0,即a
时,②当△=4﹣8a>0,即0<a
讨论;(3)由(2)可知,当a=0.5时,函数f(x)在区间[1,2]上单调递增;即lnx
在区间[1,2]上恒成立,令x=1+
,(n∈N+),则有ln(1+
)>
(n+0.5)ln
>1ln(
)n+0.5>1
,令n=2017,可得
>e.
【考点精析】利用利用导数研究函数的单调性对题目进行判断即可得到答案,需要熟知一般的,函数的单调性与其导数的正负有如下关系: 在某个区间
内,(1)如果
,那么函数
在这个区间单调递增;(2)如果
,那么函数
在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.极坐标系中方程ρ2﹣4ρcosθ=0和ρ﹣4cosθ=0表示的是同一曲线
B.![]()
C.不等式|a+b|≥|a|﹣|b|等号成立的条件为ab≤0
D.在极坐标系中方程
表示的圆和一条直线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的方程为
,直线
的倾斜角为
且经过点
.
(1)以
为极点,
轴的正半轴为极轴建立极坐标系,求曲线
的极坐标方程;
(2)设直线
与曲线
交于两点
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
的定义域为R
(1)当a=2时,求函数f(x)的值域
(2)若函数f(x)是奇函数,①求a的值;②解不等式f(3﹣m)+f(3﹣m2)>0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经市场调查,某商品在过去的100天内的销售量(单位:件)和价格(单位:元)均为时间
(单位:天)的函数,且销售量满足
=
,价格满足
=
.
(1)求该种商品的日销售额
与时间
的函数关系;
(2)若销售额超过16610元,商家认为该商品的收益达到理想程度,请判断该商品在哪几天的收益达到理想程度?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个定点
,动点
满足
.设动点
的轨迹为曲线
,直线
.
(1)求曲线
的轨迹方程;
(2)若
与曲线
交于不同的
两点,且
(
为坐标原点),求直线
的斜率;
(3)若
是直线
上的动点,过
作曲线
的两条切线
,切点为
,探究:直线
是否过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com