科目: 来源: 题型:
【题目】某手机厂商推出一次智能手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
频数 | 20 | 40 | 80 | 50 | 10 | |
男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
频数 | 45 | 75 | 90 | 60 | 30 |
![]()
(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的方差大小(不计算具体值,给出结论即可);
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意取3名用户,求3名用户评分小于90分的人数的分布列和期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正项数列{an}的首项a1=1,且(n+1)a
+anan+1﹣na
=0对n∈N*都成立.
(1)求{an}的通项公式;、
(2)记bn=a2n﹣1a2n+1 , 数列{bn}的前n项和为Tn , 证明:Tn<
.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆
,直线
,
.
(1)求证:对
,直线
与圆
总有两个不同的交点
;
(2)是否存在实数
,使得圆
上有四点到直线
的距离为
?若存在,求出
的范围;若不存在,说明理由;
(3)求弦
的中点
的轨迹方程,并说明其轨迹是什么曲线.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知△ABC的三个内角A,B,C所对应的边分别为a,b,c,且满足bcosC+
c=a.
(1)求△ABC的内角B的大小;
(2)若△ABC的面积S=
b2 , 试判断△ABC的形状.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列
满足
,且
.
(Ⅰ)证明:数列
为等差数列,并求数列
的通项公式;
(Ⅱ)若记
为满足不等式
的正整数
的个数,设
,求数列
的最大项与最小项的值.
【答案】(1)见解析;(2)最大项为
,最小项为
.
【解析】试题分析:(Ⅰ)对
两边取倒数,移项即可得出
,故而数列
为等差数列,利用等差数列的通项公式求出
,从而可得出
;(Ⅱ)根据不等式
,,得
,又
,从而
,当
为奇数时,
单调递减,
;当
为偶数时
单调递增,
综上
的最大项为
,最小项为
.
试题解析:(Ⅰ)由于
,
,则![]()
∴
,则
,即
为常数
又
,∴数列
是以1为首项,
为公比的等比数列
从而
,即
.
(Ⅱ)由
即
,得
,
又
,从而![]()
故![]()
当
为奇数时,
,
单调递减,
;
当
为偶数时,
,
单调递增,![]()
综上
的最大项为
,最小项为
.
【题型】解答题
【结束】
22
【题目】已知向量
,
,若函数
的最小正周期为
,且在区间
上单调递减.
(Ⅰ)求
的解析式;
(Ⅱ)若关于
的方程
在
有实数解,求
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】若函数h(x)=ax3+bx2+cx+d(a≠0)图象的对称中心为M(x0 , h(x0)),记函数h(x)的导函数为g(x),则有g′(x0)=0,设函数f(x)=x3﹣3x2+2,则f(
)+f(
)+…+f(
)+f(
)= .
查看答案和解析>>
科目: 来源: 题型:
【题目】设函数f(x)=
,若f(a)=f(b)=f(c)=f(d),其中a,b,c,d互不相等,则对于命题p:abcd∈(0,1)和命题q:a+b+c+d∈[e+e﹣1﹣2,e2+e﹣2﹣2)真假的判断,正确的是( )
A.p假q真
B.p假q假
C.p真q真
D.p真q假
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定义在R上的函数f(x)=ex+mx2﹣m(m>0),当x1+x2=1时,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,则实数x1的取值范围是( )
A.(﹣∞,0)
B.![]()
C.![]()
D.(1,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com