科目: 来源: 题型:
【题目】已知过抛物线 的焦点F,斜率为 的直线交抛物线于 两点,且 .
(1)求该抛物线E的方程;
(2)过点F任意作互相垂直的两条直线 ,分别交曲线E于点C,D和M,N.设线段 的中点分别为P,Q,求证:直线PQ恒过一个定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四棱锥 中,底面ABCD为矩形,侧面PAD为正三角形,且平面 ABCD平面, E为PD中点, AD=2.
(Ⅰ)求证:平面 平面PCD;
(Ⅱ)若二面角 的平面角大小 满足 ,求四棱锥 的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况的统计图如图所示:
(1)估计该校男生的人数;
(2)估计该校学生身高在170~185cm的概率;
(3)从样本中身高在180~190cm的男生中任选2人,求至少有1人身高在185~190cm的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定点 , 为圆 上任意一点,线段 上一点 满足 ,直线 上一点 ,满足 .
(1)当 在圆周上运动时,求点 的轨迹 的方程;
(2)若直线 与曲线 交于 两点,且以 为直径的圆过原点 ,求证:直线 与 不可能相切.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线C: ,点 在x轴的正半轴上,过点M的直线 与抛物线C相交于A,B两点,O为坐标原点.
(1)若 ,且直线 的斜率为1,求以AB为直径的圆的方程;
(2)是否存在定点M,使得不论直线 绕点M如何转动, 恒为定值?
查看答案和解析>>
科目: 来源: 题型:
【题目】(本题满分12分.)
数列中{an},a1=8,a4=2,且满足an+2= 2an+1- an,
(1)求数列{an}的通项公式;
(2)设Sn=,求Sn
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,江的两岸可近似地看出两条平行的直线,江岸的一侧有, 两个蔬菜基地,江岸的另一侧点处有一个超市.已知、、中任意两点间的距离为千米,超市欲在之间建一个运输中转站, , 两处的蔬菜运抵处后,再统一经过货轮运抵处,由于, 两处蔬菜的差异,这两处的运输费用也不同.如果从处出发的运输费为每千米元.从处出发的运输费为每千米元,货轮的运输费为每千米元.
(1)设,试将运输总费用(单位:元)表示为的函数,并写出自变量的取值范围;
(2)问中转站建在何处时,运输总费用最小?并求出最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com