科目: 来源: 题型:
【题目】某工厂在政府的帮扶下,准备转型生产一种特殊机器,生产需要投入固定成本万元,生产与销售均已百台计数,且每生产台,还需增加可变成本万元,若市场对该产品的年需求量为台,每生产百台的实际销售收入近似满足函数.
()试写出第一年的销售利润(万元)关于年产量(单位:百台,,)的函数关系式:(说明:销售利润=实际销售收入-成本)
()因技术等原因,第一年的年生产量不能超过台,若第一年的年支出费用(万元)与年产量(百台)的关系满足,问年产量为多少百台时,工厂所得纯利润最大?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,其中
(1)当时,求函数在处的切线方程;
(2)若函数在定义域上有且只有一个极值点,求实数的取值范围;
(3)若对任意恒成立,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线与圆O: 且与椭圆C: 相交于A,B两点
(1)若直线恰好经过椭圆的左顶点,求弦长AB;
(2)设直线OA,OB的斜率分别为k1,k2,判断k1·k2是否为定值,并说明理由
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知动直线过点,且与圆交于、两点.
(1)若直线的斜率为,求的面积;
(2)若直线的斜率为,点是圆上任意一点,求的取值范围;
(3)是否存在一个定点(不同于点),对于任意不与轴重合的直线,都有平分,若存在,求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数是定义在上的偶函数,且当时,.
(1)已画出函数在轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间;
⑵写出函数的解析式和值域.
查看答案和解析>>
科目: 来源: 题型:
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下的资料:
该兴趣小组确定的研究方案是:现从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选用的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月的数据,求出关于的线性回归方程;
(3)若有线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否是理想?
参考公式:
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的右焦点为,且点在椭圆上.
(1)求椭圆的标准方程;
(2)过椭圆上异于其顶点的任意一点作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴, 轴上的截距分别为,证明: 为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知命题 “存在”,命题:“曲线表示焦点在轴上的椭圆”,命题 “曲线表示双曲线”
(1)若“且”是真命题,求实数的取值范围;
(2)若是的必要不充分条件,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com